Quantum Physics
[Submitted on 22 Oct 2025
]
Title: Quantum Machine Learning methods for Fourier-based distribution estimation with application in option pricing
Title: 基于傅里叶的分布估计的量子机器学习方法及其在期权定价中的应用
Abstract: The ongoing progress in quantum technologies has fueled a sustained exploration of their potential applications across various domains. One particularly promising field is quantitative finance, where a central challenge is the pricing of financial derivatives-traditionally addressed through Monte Carlo integration techniques. In this work, we introduce two hybrid classical-quantum methods to address the option pricing problem. These approaches rely on reconstructing Fourier series representations of statistical distributions from the outputs of Quantum Machine Learning (QML) models based on Parametrized Quantum Circuits (PQCs). We analyze the impact of data size and PQC dimensionality on performance. Quantum Accelerated Monte Carlo (QAMC) is employed as a benchmark to quantitatively assess the proposed models in terms of computational cost and accuracy in the extraction of Fourier coefficients. Through the numerical experiments, we show that the proposed methods achieve remarkable accuracy, becoming a competitive quantum alternative for derivatives valuation.
Submission history
From: Álvaro Leitao Rodriguez [view email][v1] Wed, 22 Oct 2025 11:43:08 UTC (680 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.