Computer Science > Machine Learning
[Submitted on 22 Oct 2025
]
Title: From Prototypes to Sparse ECG Explanations: SHAP-Driven Counterfactuals for Multivariate Time-Series Multi-class Classification
Title: 从原型到稀疏心电图解释:多变量时间序列多类分类的SHAP驱动反事实方法
Abstract: In eXplainable Artificial Intelligence (XAI), instance-based explanations for time series have gained increasing attention due to their potential for actionable and interpretable insights in domains such as healthcare. Addressing the challenges of explainability of state-of-the-art models, we propose a prototype-driven framework for generating sparse counterfactual explanations tailored to 12-lead ECG classification models. Our method employs SHAP-based thresholds to identify critical signal segments and convert them into interval rules, uses Dynamic Time Warping (DTW) and medoid clustering to extract representative prototypes, and aligns these prototypes to query R-peaks for coherence with the sample being explained. The framework generates counterfactuals that modify only 78% of the original signal while maintaining 81.3% validity across all classes and achieving 43% improvement in temporal stability. We evaluate three variants of our approach, Original, Sparse, and Aligned Sparse, with class-specific performance ranging from 98.9% validity for myocardial infarction (MI) to challenges with hypertrophy (HYP) detection (13.2%). This approach supports near realtime generation (< 1 second) of clinically valid counterfactuals and provides a foundation for interactive explanation platforms. Our findings establish design principles for physiologically-aware counterfactual explanations in AI-based diagnosis systems and outline pathways toward user-controlled explanation interfaces for clinical deployment.
Submission history
From: Maciej Mozolewski [view email][v1] Wed, 22 Oct 2025 12:09:50 UTC (16,744 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.