Condensed Matter > Mesoscale and Nanoscale Physics
            [Submitted on 23 Oct 2025
            
            
            
            ]
          
          Title: Circuit-based cavity magnonics in the ultrastrong and deep-strong coupling regimes
Title: 基于电路的腔体磁子学在超强耦合和深强耦合 regime 中
Abstract: We theoretically study nonperturbative strong-coupling phenomena in cavity magnonics systems in which the uniform magnetization dynamics (magnons) in a ferromagnet is coupled to the microwave magnetic field (photons) of a single LC resonator. Starting from an effective circuit model that accounts for the magnetization dynamics described by the Landau-Lifshitz-Gilbert equation, we show that a nontrivial frequency shift emerges in the ultrastrong and deep-strong coupling regimes, whose microscopic origin remains elusive within a purely classical framework. The circuit model is further quantized to derive a minimal quantum mechanical model for generic cavity magnonics, which corresponds to a two-mode version of the Hopfield Hamiltonian and explains the mechanism of the frequency shifts found in the {\it classical} circuit model. We also formulate the relation between the frequency shift and quantum quantities, such as the ground-state particle number, quantum fluctuations associated with the Heisenberg uncertainty principle, and entanglement entropy, providing a nondestructive means to experimentally access to these quantum resources. By utilizing soft magnons in an anisotropic ferromagnet, we further demonstrate that these quantum quantities diverge at the zeros of the magnon band edges as a function of the external magnetic field. This work paves the way for cavity magnonics beyond the conventional strong coupling regime.
          Current browse context: 
        
          cond-mat.mes-hall
          
          
          
          
          
          
            
            
              Change to browse by:
              
            
            
          
        References & Citations
Bibliographic and Citation Tools
            Bibliographic Explorer (What is the Explorer?)
          
        
            Connected Papers (What is Connected Papers?)
          
        
            Litmaps (What is Litmaps?)
          
        
            scite Smart Citations (What are Smart Citations?)
          
        Code, Data and Media Associated with this Article
            alphaXiv (What is alphaXiv?)
          
        
            CatalyzeX Code Finder for Papers (What is CatalyzeX?)
          
        
            DagsHub (What is DagsHub?)
          
        
            Gotit.pub (What is GotitPub?)
          
        
            Hugging Face (What is Huggingface?)
          
        
            Papers with Code (What is Papers with Code?)
          
        
            ScienceCast (What is ScienceCast?)
          
        Demos
Recommenders and Search Tools
              Influence Flower (What are Influence Flowers?)
            
          
              CORE Recommender (What is CORE?)
            
          
              IArxiv Recommender
              (What is IArxiv?)
            
          arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.
 
  