有限尺寸效应对相图和 重子涨落的影响通过动量空间约束分析

重心 őző Kovács^{a,b}

ARTICLE INFO

摘要

Keywords: 有限尺寸效应 QCD 相图 倍轻子涨落 临界端点 夸克介子模型 有限系统尺寸对 QCD 相图的影响在均场夸克-介子模型中通过各种动量空间约束进行了研究。一方面,方案的选择——低动量截止和周期性或反周期性边界条件的离散化——以及真空涨落的存在被发现强烈影响 CEP 的体积依赖性。另一方面,在线性尺寸低于 L ù 10fm 的情况下,其位置在每种情况下都显著偏移。这也在守恒荷波动中有所反映,这些波动是使用多种有限尺寸效应方案沿相边界进行调查的。

1. 介绍

尽管强相互作用物质的相图已经被广泛研究,但 是否存在将已知的交叉过渡与高化学势下预期的第 一阶相变分开的二级临界终点 (CEP) 仍然是一个开 放问题。寻找 CEP 是最近许多理论和实验工作的主 要动机之一。在这些搜索方面的不同之处之一是系 统大小, 即要么是有限的, 要么是无限大的。重离子 碰撞形成的火球——预计会在实验中穿过相变-总是具有有限的空间范围。相比之下, 在理论上用于 探索有限化学势下的相图的有效模型计算通常是在 热力学极限下解决的,其中体积趋向于无穷大。为了 考虑有限尺寸效应,通常在理论模型 [1-28] 中实施 某种动量空间约束。这可以是具有特定(大多数情况 下是周期性或反对称周期性偶尔与其他条件)边界条 件的离散化,或者只考虑丢失最低模态的影响,一个 简单的低动量截断。各种模型中的不同情景导致了总 体上相似但细节不同的有限尺寸依赖性。在[29,30] 中,在平均场夸克-介子模型中实施了多种类型的动 量空间约束以理解这些差异的来源。在同一出版物 中,已经部分研究了重子涨落,我们将在本文中继续 讨论这一问题。

守恒电荷涨落是寻找临界端点的主要工具之一, 因为它们对关联长度 [31, 32] 的依赖性很强。例如, 净重子数的涨落经常被使用。这些可以直接在有效 场论模型中计算得到,也可以通过实验中的质子数 涨落来获取 [33-35],尽管后者可能表现出不同的行

🙎 gyozo.kovacs@uwr.edu.pl (Kovács)

ORCID(s) : 0000--0003--3735--7620 (Kovács)

为 [36-38]。 ¹ 如上所述,在场论计算和实验中,物理系统的大小是不同的。因此,守恒电荷的涨落通常通过没有显式体积依赖性的累积量比值来表征。然而,这些比率仍可能隐含地依赖于系统大小 [39]。累积量比值的尺寸依赖性已在有效方法中进行了研究,这些方法在 [4,12] 为零或低化学势 [9] 以及接近临界终点 [27,30] 的情况下,作为温度或归一化参数 $T_{-}T^{\text{CEP}}$ 和 $\mu_{q-}\mu_{q}^{\text{CEP}}$ 的函数。在这里,我们还将研究在相边界处的重子涨落的有限尺寸效应作为化学势的函数。

论文组织如下。在第2节中,我们简要总结了不同的动量空间约束如何可以在著名的平均场夸克-介子模型中实现。在第3节中,给出了不同场景下的有限尺寸效应的比较,并特别关注路径和CEP(s)及手征破缺相的存在。最后,在第4节中,我们展示了重子涨落是如何被修改的,在第5节中给出我们的结论与展望。

2. 夸克-介子模型在有限体积下的研究

在本文中,我们将使用平均场近似下的夸克-介子模型,该模型可以以不同的复杂程度表示。可以从仅两个 [1,40] 或两个加一个味道 [3,41] 开始。介子部分可能只包含标量和赝标量场,也可以进一步扩展自由度,例如矢量和轴矢量介子 [42-44](这称为ePQM 模型)。还可以通过包括 Polyakov 环变量来考虑统计限制。然而,与真空项 [29] 的处理不同,事实证明这些差异几乎不会改变有限大小依赖性 [30] 的定性方面。在本节中,我们仅总结夸克-介子模型中

 $[^]a$ Wigner RCP, Konkoly-Thege Mikos ut 29, Budapest, 1121, Hungary

^b University of Wrocław, Plac Maxa Borna, Wrocław, 50204, Poland

^{*}对 EMMI 研讨会的贡献:临界性方面的研究 II

¹此外,在当前的理论模型(使用了大正则系综)和实验(使用了规范图景并且精确守恒粒子数)中,净重子数或质子数的守恒以不同的方式表现出来。

不同动量空间约束的实现。我们在技术上使用了最 先进的版本 ePQM 模型的细节可以在 [30] 中找到。

2.1. 动量空间约束条件

我们使用的是最简单的场景,即实现低动量截断。在这种情况下,动量积分仅通过一个赫维赛德 函数

$$\int \frac{d^3p}{.2\pi/^3} \to \int \frac{d^3p}{.2\pi/^3} \theta.p * \lambda/, \tag{1}$$

进行修改,该函数可以直接应用于费米子真空和热涨落。在前者的情况下,重整化保证了 $\lambda = \pi_L T$ 限截断与正则化之间没有冲突。

尽管在直接空间中的含义不太直观,但由于最低模式对相变的重要性,使用较低的截止值是很有道理的。这一情景进一步的支持来自于理想玻色子气体 [45] 的模型计算结果,在这些计算中,低动量截止的影响与直接实施有限空间范围的效果非常相似。

动量空间中的离散化场景自然地来源于傅里叶变换,如果系统在实空间中有有限的大小。有限系统的形状及其表面上施加的边界条件决定了动量模式。在大多数情况下,假设一个边长为 L 的立方体体积,并采用最简单的周期性边界条件(PBC)或反周期性边界条件(APBC)。在这种情况下,动量积分被替换成分别遍历模式 $p_i=2n_i\pi_L L=n_ip$ 或 $p_i=2n_i+1/\pi_L L=n_i+1_2/p$ 的求和,其中使用 n_i 臣 Z, i 臣 x, y, z/,而 $p\equiv 2\pi_L L$ 是动量网格的大小。请注意,PBC 与 APBC 之间的主要区别在于零模的存在,这在有限尺寸效应的情况下预计会起到重要作用。为了简化数值计算,将动量模式的求和从立方图案重新排列为球形求和(其中 K 是相应的核函数)

$$\sum_{n_x,n_v,n_z=*\varnothing}^{\varnothing} K.p_i/=\sum_{j=1}^{\varnothing} \sum_m K.p_j, m/, \tag{2}$$

这利用了具有特定 $|\vec{p}|$ 模式的多重性 m。此外,可以证明相邻动量的差值 $p_{j,j+1} = p_{j+1} * p_j$ 随着 j 的增加而减小。费米子物质部分由费米-狄拉克统计规律调控,因此其被积函数 $K^{\text{mat}}.p_j,m/$ 以及该核从 j 到 j+1 的变化在大 j 时受到抑制。由于这种抑制,可以简单地忽略某一 λ^{cut} 截止值以上的高动量模式。或者,可以在一个更低的 λ 处将求和改为积分,这被称为紫外改进 [25,26]。然后,得到的不是无限求和,

而是

$$\frac{1}{L^3} \sum_{i=1}^{j_{\text{max}}} \sum_{m} + \int \frac{d^3 p}{.2\pi/3} \theta. p * \lambda/.$$
 (3)

在任何一种情况下,都需要分别为每个尺寸设置 λ^{cut} 或 λ ,以使得截断或替换的影响数值上可以忽略不计。

紫外发散的费米子真空涨落也可能通过更高的 截止值进行正则化。此外,实现 UV 改进从而对高动 量进行球形积分允许使用通常的重正化方法。然而, 将球形积分拟合到立方网格中的模糊性会导致因积 分核增长过强而产生的大幅振荡误差。在这种情况 下应用 UV 改进需要从立方下边界开始积分。这仅 引发了一个技术难题,在附录 [30] 中详细讨论了这 个问题。最终,通过这种方法代替求和得到

$$\frac{1}{L^{3}} \sum_{j=1}^{j_{\text{max}}} \sum_{m} + \int_{p=\lambda}^{p=\sqrt{3}\lambda} \frac{dp \ p^{2}}{.2\pi/^{3}} {}^{\lambda}.p/ + \int \frac{d^{3}p}{.2\pi/^{3}} \theta.p * \sqrt{3}\lambda/, \tag{4}$$

其中 $^{\lambda}.p/$ 是对应于半径为p的球体上位于边长为 $^{2\lambda}$ 的立方盒外部点的立体角。在径向动量积分中, $^{\lambda}.p/$ 替换了给定项中的完整 $^{4\pi}$ 立体角。最后,通过 UV 改进,可以定义一种方法来实现夸克-介子模型中费米子真空和物质涨落的离散化,该方法允许重正化并且在数值上也是可行的。我们在计算中使用了这种方法。

3. 相图的尺寸依赖性

低动量截断

为了研究相图对尺寸的依赖性,²,特别是 CEP, 我们应用 Sec. 2.1 中讨论的场景,从具有低动量截断 的最简单情况开始。

在先前关于夸克-介子模型中平均场框架内的有限尺寸效应的研究中(例如,[1-4]),没有包含费米子真空涨落。

因此,有限体积对 $T = \mu_q = 0$ 处物理量的影响是不存在的。

然而,真空物理的改变会影响整个相结构的尺寸依赖性。

 $^{^2}$ 我们在 $T*\mu_q$ 平面上绘制了相图,并且具有对称的夸克物质 $\mu_u=\mu_d=\mu_s\equiv\mu_q=\mu_B_3$ 。

³ 这在图 1 中可以清楚地看到,该图显示了低 动量截断场景下无限和有限尺寸的相图。当对真空 贡献也应用下截止(顶部面板)时,CEP 以及稍小规模的整个手征破缺相消失(分别在 L ù 2.5fm 和 L ù 2fm),这与未修改费米子真空涨落的情况相反(底部面板)。这导致了 QM 和其他框架中先前计算之间的差异,即随着系统尺寸减小,手征破缺相呈现增加而非减少的趋势。

动量离散化

当动量离散化应用于真空贡献时,对于 PBC 边界条件,在系统尺寸减小的情况下手征对称性破缺甚至得到了增强,并且对于不太小的尺寸(即 L > 1fm 大小)也适用于 APBC 边界条件,与低动量截止的情况不同。对于 PBC 边界条件,这可以通过零模的存在来解释,而对于 APBC 边界条件,则表明在这些中间尺寸下,不仅零模而且进一步的低模态也有显著贡献。将我们的结果与 NJL 模型中的平均场计算 [11-15, 18] 和功能方法的结果 [8, 26] 进行比较,可以详细说明离散化和低动量截止对手征对称性破缺的影响之间的差异。似乎对于 PBC 边界条件,这种差异来自于动量积分的平均场处理(趋势在 NJL 模型中相似但在功能方法中不同),而对于 APBC 边界条件,则来自于发散真空项的处理(中间尺寸下的增加没有出现在 NJL 模型中)。

由于增强的自发手性对称性破缺, 手征凝聚物的真空值 $\bar{\phi}$ 随系统尺寸减小而增加。然而, 如果存在真空项,则对于 $\bar{\phi} \to \emptyset$ 而言, 大势能不被下限所约束, 因为它表现出 × * $\bar{\phi}^4$ log $\bar{\phi}$ 的行为而变得主导。这些因素共同导致在给定有限尺度下场方程的公共解丢失(例如, 在 ePQM 中大约为 L í 5.5fm)。为了避免这个问题,我们关注那些真空贡献不因有限体积而改变或仅在最低模式中考虑离散化的情况(如在 [1] 中所做的那样),当研究相图时。

离散化对费米子物质涨落也有有趣的影响。随着温度趋于零,费米-狄拉克分布趋于一个单位阶跃函数,在化学势大于构成夸克质量 m_f 的情况下,在 $p=\sqrt{\mu_q^2*m_f^2}$ 处的费米面出现不连续性。当在固定 $T \gtrsim 0$ 下增加 μ_q 时,这个费米面扩展并通过有限 L 处的一个个离散模式。这导致费米子物质部分突然增加,因此手征凝聚物(s)出现骤降,从而产生一

个"阶梯状"多层次相变。进入费米面以下的不同模 式可能生成单独的二级相变和各自的临界点。对于 足够小的尺寸,最低模式总是给出主导 CEP, 但这 不一定与无限体积 CEP 相关联。为了更好地理解由 此产生的大小依赖性相结构以及特别是 CEPs 路径, 我们研究了多个夸克-介子模型。遵循[30], 我们实 现 [1] (QM A) 中介绍的最简单的 $N_f = 2$ 模型, 在 [41] (QM B 和 C) 中采用 $N_f = 2 + 1$ 版本的两种参 数化, 并具有 $m_{\sigma} = 600$ 和 800MeV 标量介子质量, ⁴ 以及更先进的 ePQM 模型。QM A-C 没有考虑真空 涨落,与之相反的是 ePQM 中的 Polyakov 环效应 也不存在。对于 ePQM, 我们使用了拟合 1,1,1,2 的设 置和参数化,在[42]中。然而,有限体积中的 CEP 路径对这些差异并不敏感,而是由其在 $L = \emptyset$ 处的 位置决定的。这可以在图 2 的上部面板中看到, 其中 展示了 APBC 下主导临界点的尺寸依赖性。实线对 应的是与 L → ØCEP 相连的临界点路径, 而虚线则 显示了当尺寸非常小(此时其是分离状态)时对应的 主导 CEP 临界点路径。对于在无限大小下具有更高 能级的 CEP 的模型 (QM A 和 B), 主要临界点从 $L \to \emptyset$ 到 $L \to 0$ 有一条平滑路径, 而对于具有较 低的 CEP 的模型 (QM C 和 ePQM),则会发生互 换,从而导致一种特殊的尺寸依赖性。由于这种行为 直接与动量积分的结构相关, 因此它自然也出现在 NJL 模型计算 [16] 以及具有 FRG[8, 9] 的夸克-介子 模型中。在PBC的情况下,进一步的复杂性在于,如 果真空涨落不被修改,则 CEP 移动到更高的 T 和更 低的 μ_a 位置,随着尺寸减小。此外,由于物质部分 中的零模并未由真空部分中的零模补偿, 在低于某 个特定大小时, 高温下的解将不再存在。在真空中至 少包含零模的影响可以解决这个问题, 并使 CEP 的 趋势与 APBC 和低动量截止场景相似。图 2 的下部 展示了 PBC 情况下 CEPs 的路径。在这里,实线对 应于真空贡献未被修改的情况,而虚点线则显示了 至少在零模中考虑离散化的情况。在这种情况下,在 尺寸较小时, 存在多个临界点的影响再次变得重要, 类似于 APBC 观察到的情况。

³通常,真空贡献的修改在无限体积下已经强烈影响了相图。

 $^{^4{\}rm QM}$ B 和 C 的参数集可以在 [41] 中表 II 底部面板的第 11 行和第 13 行找到。

4. 重子数涨落

在本节中,我们讨论了有限尺寸效应对重子数 涨落的影响。净重子数的广义热敏性被定义为

$$\chi_n = \frac{\partial^n p_{-} T^4}{\partial .\mu_{q_{-}} T^{/n}} \bigg|_{T}, \tag{5}$$

并通过以下方式与累积量相关:

$$C_n = VT^3 \chi_n. (6)$$

通过取累积量的比例,这些比例等于相应的热敏感度比例,可以消除明确的体积依赖性。例如,可以定义偏斜 $S\sigma = C_3 _ C_2$ 或超额峰态 $\kappa\sigma^2 = C_4 _ C_2$,其中 σ 是方差。然而,这些量可能仍然隐含地取决于系统尺寸 [39]。在平均场计算中,广义磁化率可以很容易地获得,因为大势能可以直接得到,因此压力

$$p.T, \mu_a / \equiv .0, 0 / *.T, \mu_a /$$
 (7)

可以通过确定,这与 Dyson-Schwinger 方法 [26, 27] 的情况不同。在这里, 我们计算了有限系统大小下的 重子涨落, 既包括离散化(使用 APBC), 也包括低动 量截断。在离散化情景中,相图的体积依赖性更为复 杂,特别是在CEP(s)附近。低温和高化学势下的阶 梯状相变以及多个临界点,如 Sec.3 所讨论的,在交 叉区制度[9]中已经可以强烈影响守恒电荷涨落。因 此,在本研究中,我们将研究限制于具有较高 CEP 的模型, 5 , 即具有 $m_{\sigma} = 600 \text{MeV}$ 在 [41] 中的参数 化。该模型没有费米子真空涨落,因此该设置等效于 真空贡献未被有限尺寸效应修改。相应的效应已经 在 Sec. 3 中阐明, 而该模型的版本允许同时实现低 动量截断和小尺寸的离散化。为了正确恢复手性破 缺相中峰度的 $\sigma^2 \kappa = 1$ 值,必须将 Polyakov 环变量 也包含在统计约束中。为此, 我们将使用通常的实现 和在 [46] 中引入的 Polyakov 环势。因此,我们使用 的模型等效于 Sec. 3 中 QM B 的 Polyakov 环扩展 版本。

在上述框架中,我们计算了第四阶与第二阶(对应峰度)以及第二阶与第一阶累积量的比值作为夸克化学势的函数,在 $T \lesssim T_{pc} \cdot \mu_q /$ (即沿着但略低于相变线)的情况下。这些比率分别显示在图 3 的上部和中部面板中,而底部面板则展示了相应的相边界。

在每个图中,紫色曲线属于 $L=\emptyset$,而绿色和蓝色曲线分别是使用 APBC 和低动量截止的 L=6fm 离散化的结果。可以看出,指示 CEP 位置的峰值-在底部面板上也有显示-对于两种情况都向更高的化学势移动了。然而,在离散化的情况下,变化,特别是手征破坏相的扩展较弱。由于发散仍然存在,并且在将动量空间约束应用于平均场模型时可以看到真正的临界现象,因此 CEP 周围信号的大小仅轻微改变。 6 为了研究有限尺寸对临界性的影响,需要实现不同的方案来考虑有限系统尺寸或其他近似值。然而,探索这些可能性超出了本工作的范围。

5. 结论

我们研究了在包含有限尺寸效应的平均场夸克-介子模型中的 QCD 相图和重子数涨落,通过动量空间约束实现。几种方案,包括低动量截断和具有不同边界条件的离散化,在有限体积下的细节差异得到了实施。尽管存在这些差异,但发现 CEP 显著偏移——在大多数情况下要么是化学势更大,要么温度更低——低于 L ù 10fm。

有限尺寸效应对重子涨落的影响也通过低动量 截止和采用 APBC 的离散化方法进行了研究。结果 发现,CEP 信号的位置发生了偏移,但由于仅应用 动量空间约束时平均场方法中的临界性未变,其形 状几乎未被修改。

本工作中及先前发表的结果要么不完整(从消除有限尺寸发散的意义上来说)[30] 要么分辨率太低 [27] 无法观察到 CEP 附近的标度行为。为了更好地理解有限系统大小对 QCD 相图中临界波动的影响——这对最近和未来的测量来说是有趣的——我们需要改进有效模型计算中的有限尺寸效应实现。

6. 致谢

我们感谢 P.M. Lo, K. Redlich, C. Sasaki, P. Kovács 和 Gy. Wolf 的宝贵讨论。Gy. K. 感谢匈牙利国家研究、开发和创新基金在项目编号 K 138277 下的支持。Gy. K. 的工作部分得到了波兰国家科学中心(NCN) 在 OPUS Grant No. 2022/45/B/ST2/01527项目下的支持。

 $^{^5}$ 在一阶区域内,仍然可以看到对应于更高模式进入费米面以下的临界点的影响。然而,在这里我们仅使用中等尺度的系统大小,超过 $L=5{
m fm}$,在这种情况下这似乎不影响 $T=T_c$ 周围的重子涨落以及低于 $\mu_q=250~{
m MeV}$ 的情况。

 $^{^{6}}$ 此外,即使在非局部模型中,如果动量依赖性以如 [47] 中的形式因子处理,则临界性依然存在。

图 1: 在低动量截止方案中,修改(上方)和未修改(下方) 真空贡献的相图的尺寸依赖性。

图 2: 不同夸克-介子模型中,在反周期(顶部)和周期(底部)边界条件下,CEP 路径的尺寸依赖性。

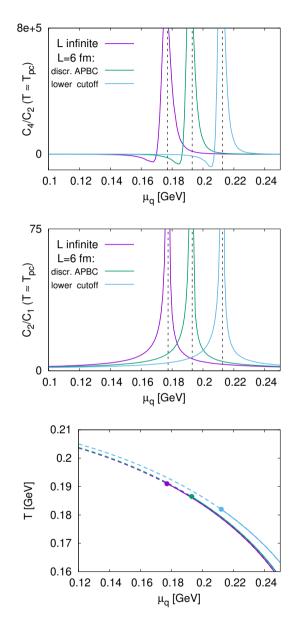


图 3: 无限大小和 L=6fm 的第四与第二(顶层)以及第二与第一(中间)阶累积量之比——使用 APBC 离散化以绿色表示,低动量截止以蓝色表示——沿各自的相边界(底部)。

有限尺寸效应对相图和重子涨落的影响通过动量空间约束

参考文献

- L. F. Palhares, E. S. Fraga, and T. Kodama, J. Phys. G 38, 085101 (2011), arXiv:0904.4830 [nucl-th].
- [2] E. S. Fraga, T. Kodama, L. F. Palhares, and P. Sorensen, PoS FACESQCD, 017 (2010), arXiv:1106.3887 [hep-ph].
- [3] N. Magdy, M. Csanád, and R. A. Lacey, J. Phys. G 44, 025101 (2017), arXiv:1510.04380 [nucl-th].
- [4] N. Magdy, Universe 5, 94 (2019), arXiv:1904.10949 [nucl-th].
- [5] J. Braun, B. Klein, and H. J. Pirner, Phys. Rev. D 71, 014032 (2005), arXiv:hep-ph/0408116.
- [6] J. Braun, B. Klein, and H. J. Pirner, Phys. Rev. D 72, 034017 (2005), arXiv:hep-ph/0504127.
- [7] J. Braun, B. Klein, H. J. Pirner, and A. H. Rezaeian, Phys. Rev. D 73, 074010 (2006), arXiv:hep-ph/0512274.
- [8] R.-A. Tripolt, J. Braun, B. Klein, and B.-J. Schaefer, Phys. Rev. D 90, 054012 (2014), arXiv:1308.0164 [hep-ph].
- [9] G. Almasi, R. Pisarski, and V. Skokov, Phys. Rev. D 95, 056015 (2017), arXiv:1612.04416 [hep-ph].
- [10] B. Klein, Phys. Rept. 707-708, 1 (2017), arXiv:1710.05357 [hep-ph].
- [11] A. Bhattacharyya, P. Deb, S. K. Ghosh, R. Ray, and S. Sur, Phys. Rev. D 87, 054009 (2013), arXiv:1212.5893 [hep-ph].
- [12] A. Bhattacharyya, R. Ray, and S. Sur, Phys. Rev. D 91, 051501 (2015), arXiv:1412.8316 [hep-ph].
- [13] Z. Pan, Z.-F. Cui, C.-H. Chang, and H.-S. Zong, Int. J. Mod. Phys. A 32, 1750067 (2017), arXiv:1611.07370 [hep-ph].
- [14] Q.-W. Wang, Y. Xia, C. Shi, and H.-S. Zong, (2018), arXiv:1802.00258 [hep-ph].
- [15] Q. Wang, Y. Xiq, and H. Zong, Mod. Phys. Lett. A 33, 1850232 (2018), arXiv:1806.05315 [hep-ph].
- [16] K. Xu and M. Huang, Phys. Rev. D 101, 074001 (2020), arXiv:1903.08416 [hep-ph].
- [17] S.-S. Wan, D. Li, B. Zhang, and M. Ruggieri, (2020), arXiv:2012.05734 [hep-ph].
- [18] N. B. Mata Carrizal, E. Valbuena Ordóñez, A. J. Garza Aguirre, F. J. Betancourt Sotomayor, and J. R. Morones Ibarra, Universe 8, 264 (2022).
- [19] L. M. Abreu, E. S. Nery, and A. P. C. Malbouisson, Phys. Rev. D 91, 087701 (2015).
- [20] L. M. Abreu and E. S. Nery, Int. J. Mod. Phys. A 31, 1650128 (2016).
- [21] L. M. Abreu and E. S. Nery, Phys. Rev. C 96, 055204 (2017), arXiv:1711.07934 [nucl-th].
- [22] T. Ishikawa, K. Nakayama, and K. Suzuki, Phys. Rev. D 99, 054010 (2019), arXiv:1812.10964 [hep-ph].
- [23] B.-L. Li, Z.-F. Cui, B.-W. Zhou, S. An, L.-P. Zhang, and H.-S. Zong, Nucl. Phys. B 938, 298 (2019), arXiv:1711.04914 [hep-ph].
- [24] J. Luecker, C. S. Fischer, and R. Williams, Phys. Rev. D 81, 094005 (2010), arXiv:0912.3686 [hep-ph].

- [25] Y.-Z. Xu, C. Shi, X.-T. He, and H.-S. Zong, Phys. Rev. D 102, 114011 (2020), arXiv:2009.12035 [nucl-th].
- [26] J. Bernhardt, C. S. Fischer, P. Isserstedt, and B.-J. Schaefer, Phys. Rev. D 104, 074035 (2021), arXiv:2107.05504 [hep-ph].
- [27] J. Bernhardt, C. S. Fischer, and P. Isserstedt, Phys. Lett. B 841, 137908 (2023), arXiv:2208.01981 [hep-ph].
- [28] A. Shaikh, R. K. Mohapatra, and S. Datta, Nucl. Phys. A 1054, 122981 (2025), arXiv:2406.20073 [hep-ph].
- [29] G. Kovács, P. Kovács, P. M. Lo, K. Redlich, and G. Wolf, in 7th FAIR next generation scientists workshop 2022 (2023) arXiv:2302.12925 [hep-ph].
- [30] G. Kovács, P. Kovács, P. M. Lo, K. Redlich, and G. Wolf, Phys. Rev. D 108, 076010 (2023), arXiv:2307.10301 [hep-ph]
- [31] V. Koch, "Hadronic Fluctuations and Correlations," in Relativistic Heavy Ion Physics, edited by R. Stock (2010) pp. 626–652, arXiv:0810.2520 [nucl-th].
- [32] M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009), arXiv:0809.3450 [hep-ph].
- [33] J. Adamczewski-Musch et al. (HADES), Phys. Rev. C 102, 024914 (2020), arXiv:2002.08701 [nucl-ex].
- [34] S. Collaboration (STAR Collaboration), Phys. Rev. Lett. 126, 092301 (2021).
- [35] M. S. Abdallah et al. (STAR), Phys. Rev. Lett. 128, 202303 (2022), arXiv:2112.00240 [nucl-ex].
- [36] M. Kitazawa and M. Asakawa, Phys. Rev. C 86, 024904 (2012), [Erratum: Phys.Rev.C 86, 069902 (2012)], arXiv:1205.3292 [nucl-th].
- [37] V. Koch, M. Marczenko, K. Redlich, and C. Sasaki, Phys. Rev. D 109, 014033 (2024), arXiv:2308.15794 [hep-ph].
- [38] M. Marczenko, K. Redlich, and C. Sasaki, (2024), arXiv:2410.21746 [nucl-th].
- [39] V. Skokov, B. Friman, and K. Redlich, Phys. Rev. C 88, 034911 (2013), arXiv:1205.4756 [hep-ph].
- [40] B.-J. Schaefer, J. M. Pawlowski, and J. Wambach, Phys. Rev. D 76, 074023 (2007), arXiv:0704.3234 [hep-ph].
- [41] B.-J. Schaefer and M. Wagner, Phys. Rev. D 79, 014018 (2009), arXiv:0808.1491 [hep-ph].
- [42] P. Kovács, Z. Szép, and G. Wolf, Phys. Rev. D 93, 114014 (2016), arXiv:1601.05291 [hep-ph].
- $[43] \ \ G. \ \ Kovács, \ P. \ \ Kovács, \ \ and \ \ Z. \ \ Szép, \ Phys. \ \ Rev. \ D \ \ \mathbf{104}, \\ 056013 \ (2021), \ arXiv:2105.12689 \ [hep-ph] \ .$
- [44] F. Giacosa, P. Kovács, and S. Jafarzade, (2024), arXiv:2407.18348 [hep-ph].
- $[45]\,$ K. Redlich and K. Zalewski, (2016), arXiv:1611.03746 [nuclth] .
- [46] P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich, and C. Sasaki, Phys. Rev. D 88, 074502 (2013), arXiv:1307.5958 [hep-lat].
- [47] C. Sasaki, B. Friman, and K. Redlich, Phys. Rev. D 75, 074013 (2007), arXiv:hep-ph/0611147.