Cryptography and Security
See recent articles
Showing new listings for Thursday, 25 September 2025
- [1] arXiv:2509.19485 [cn-pdf, pdf, html, other]
-
Title: Identifying and Addressing User-level Security Concerns in Smart Homes Using "Smaller" LLMsTitle: 使用“更小”的LLMs识别和解决智能家居中的用户级安全问题Hafijul Hoque Chowdhury, Riad Ahmed Anonto, Sourov Jajodia, Suryadipta Majumdar, Md. Shohrab HossainComments: 10 pages, accepted at PST 2025Subjects: Cryptography and Security (cs.CR) ; Artificial Intelligence (cs.AI)
With the rapid growth of smart home IoT devices, users are increasingly exposed to various security risks, as evident from recent studies. While seeking answers to know more on those security concerns, users are mostly left with their own discretion while going through various sources, such as online blogs and technical manuals, which may render higher complexity to regular users trying to extract the necessary information. This requirement does not go along with the common mindsets of smart home users and hence threatens the security of smart homes furthermore. In this paper, we aim to identify and address the major user-level security concerns in smart homes. Specifically, we develop a novel dataset of Q&A from public forums, capturing practical security challenges faced by smart home users. We extract major security concerns in smart homes from our dataset by leveraging the Latent Dirichlet Allocation (LDA). We fine-tune relatively "smaller" transformer models, such as T5 and Flan-T5, on this dataset to build a QA system tailored for smart home security. Unlike larger models like GPT and Gemini, which are powerful but often resource hungry and require data sharing, smaller models are more feasible for deployment in resource-constrained or privacy-sensitive environments like smart homes. The dataset is manually curated and supplemented with synthetic data to explore its potential impact on model performance. This approach significantly improves the system's ability to deliver accurate and relevant answers, helping users address common security concerns with smart home IoT devices. Our experiments on real-world user concerns show that our work improves the performance of the base models.
随着智能家居物联网设备的快速增长,用户面临着越来越多的安全风险,这从最近的研究中可以明显看出。 在寻求更多了解这些安全问题的答案时,用户大多只能依靠自己的判断,通过各种来源,如在线博客和技术手册,这可能会使普通用户在提取必要信息时更加复杂。 这一需求与智能家居用户的常见心态不符,因此进一步威胁了智能家居的安全性。 在本文中,我们旨在识别和解决智能家居中的主要用户级安全问题。 具体来说,我们开发了一个来自公共论坛的问答新数据集,捕捉了智能家居用户面临的实际安全挑战。 我们通过利用潜在狄利克雷分布(LDA)从我们的数据集中提取智能家居中的主要安全问题。 我们在该数据集上对相对“较小”的变压器模型进行微调,如T5和Flan-T5,以构建一个针对智能家居安全的问答系统。 与GPT和Gemini等较大的模型不同,这些模型功能强大但通常资源消耗大且需要数据共享,而较小的模型在资源受限或隐私敏感的环境(如智能家居)中更易于部署。 该数据集是人工整理的,并补充了合成数据,以探索其对模型性能的潜在影响。 这种方法显著提高了系统提供准确和相关答案的能力,帮助用户解决与智能家居物联网设备相关的常见安全问题。 我们在真实用户关注的问题上进行的实验表明,我们的工作提高了基础模型的性能。
- [2] arXiv:2509.19568 [cn-pdf, pdf, html, other]
-
Title: Knock-Knock: Black-Box, Platform-Agnostic DRAM Address-Mapping Reverse EngineeringTitle: 敲门:黑盒、平台无关的DRAM地址映射逆向工程Comments: Accepted in 2nd Microarchitecture Security Conference 2026 (uASC '26), 17 pages, 8 figures, 3 tables, 1 algorithm, 1 appendixSubjects: Cryptography and Security (cs.CR)
Modern Systems-on-Chip (SoCs) employ undocumented linear address-scrambling functions to obfuscate DRAM addressing, which complicates DRAM-aware performance optimizations and hinders proactive security analysis of DRAM-based attacks; most notably, Rowhammer. Although previous work tackled the issue of reversing physical-to-DRAM mapping, existing heuristic-based reverse-engineering approaches are partial, costly, and impractical for comprehensive recovery. This paper establishes a rigorous theoretical foundation and provides efficient practical algorithms for black-box, complete physical-to-DRAM address-mapping recovery. We first formulate the reverse-engineering problem within a linear algebraic model over the finite field GF(2). We characterize the timing fingerprints of row-buffer conflicts, proving a relationship between a bank addressing matrix and an empirically constructed matrix of physical addresses. Based on this characterization, we develop an efficient, noise-robust, and fully platform-agnostic algorithm to recover the full bank-mask basis in polynomial time, a significant improvement over the exponential search from previous works. We further generalize our model to complex row mappings, introducing new hardware-based hypotheses that enable the automatic recovery of a row basis instead of previous human-guided contributions. Evaluations across embedded and server-class architectures confirm our method's effectiveness, successfully reconstructing known mappings and uncovering previously unknown scrambling functions. Our method provides a 99% recall and accuracy on all tested platforms. Most notably, Knock-Knock runs in under a few minutes, even on systems with more than 500GB of DRAM, showcasing the scalability of our method. Our approach provides an automated, principled pathway to accurate DRAM reverse engineering.
现代系统级芯片(SoC)使用未记录的线性地址混淆功能来隐藏动态随机存取存储器(DRAM)寻址,这使得面向DRAM的性能优化变得复杂,并阻碍了针对基于DRAM的攻击(尤其是行锤攻击)的主动安全分析。尽管之前的工作解决了物理地址到DRAM映射的逆向问题,但现有的基于启发式的逆向工程方法是部分的、成本高且不适用于全面恢复。本文建立了严格的理论基础,并提供了高效的实用算法,用于黑盒、完整的物理地址到DRAM地址映射恢复。我们首先在有限域GF(2)上的线性代数模型中对逆向工程问题进行了形式化。我们描述了行缓冲区冲突的时间指纹,证明了银行寻址矩阵与经验构建的物理地址矩阵之间的关系。基于此描述,我们开发了一种高效、抗噪声且完全平台无关的算法,在多项式时间内恢复完整的银行掩码基,这比之前工作的指数搜索有显著改进。我们进一步将模型推广到复杂的行映射,引入了新的基于硬件的假设,使能够自动恢复行基,而不是之前的基于人工指导的贡献。在嵌入式和服务器类架构上的评估证实了我们方法的有效性,成功重建了已知的映射并发现了以前未知的混淆函数。我们的方法在所有测试平台上实现了99%的召回率和准确性。最值得注意的是,Knock-Knock在具有超过500GB DRAM的系统上运行时间不到几分钟,展示了我们方法的可扩展性。我们的方法为准确的DRAM逆向工程提供了一条自动化、有原则的路径。
- [3] arXiv:2509.19650 [cn-pdf, pdf, html, other]
-
Title: SoK: A Systematic Review of Malware Ontologies and Taxonomies and Implications for the Quantum EraTitle: SoK:恶意软件本体论和分类学的系统综述及对量子时代的启示Comments: 40 pages, 9 figures, 5 tablesSubjects: Cryptography and Security (cs.CR) ; Systems and Control (eess.SY)
The threat of quantum malware is real and a growing security concern that will have catastrophic scientific and technological impacts, if not addressed early. If weaponised or exploited especially by the wrong hands, malware will undermine highly sophisticated critical systems supported by next-generation quantum architectures, for example, in defence, communications, energy, and space. This paper explores the fundamental nature and implications of quantum malware to enable the future development of appropriate mitigations and defences, thereby protecting critical infrastructure. By conducting a systematic literature review (SLR) that draws on knowledge frameworks such as ontologies and taxonomies to explore malware, this provides insights into how malicious behaviours can be translated into attacks on quantum technologies, thereby providing a lens to analyse the severity of malware against quantum technologies. This study employs the European Competency Framework for Quantum Technologies (CFQT) as a guide to map malware behaviour to several competency layers, creating a foundation in this emerging field.
量子恶意软件的威胁是真实存在的,并且是一个日益增长的安全问题,如果不尽早解决,将会产生灾难性的科学和技术影响。 如果被武器化或被不当人员利用,恶意软件将破坏由下一代量子架构支持的高度复杂的关键系统,例如在国防、通信、能源和太空领域。 本文探讨了量子恶意软件的基本性质和影响,以促进适当缓解和防御措施的未来发展,从而保护关键基础设施。 通过进行系统的文献综述(SLR),结合本体论和分类学等知识框架来探索恶意软件,这提供了对恶意行为如何转化为对量子技术攻击的见解,从而提供了一个分析针对量子技术的恶意软件严重性的视角。 本研究采用欧洲量子技术能力框架(CFQT)作为指导,将恶意软件行为映射到多个能力层,为这一新兴领域奠定了基础。
- [4] arXiv:2509.19677 [cn-pdf, pdf, html, other]
-
Title: Unmasking Fake Careers: Detecting Machine-Generated Career Trajectories via Multi-layer Heterogeneous GraphsTitle: 揭露虚假职业:通过多层异构图检测机器生成的职业轨迹Comments: Accepted at EMNLP 2025 MainSubjects: Cryptography and Security (cs.CR)
The rapid advancement of Large Language Models (LLMs) has enabled the generation of highly realistic synthetic data. We identify a new vulnerability, LLMs generating convincing career trajectories in fake resumes and explore effective detection methods. To address this challenge, we construct a dataset of machine-generated career trajectories using LLMs and various methods, and demonstrate that conventional text-based detectors perform poorly on structured career data. We propose CareerScape, a novel heterogeneous, hierarchical multi-layer graph framework that models career entities and their relations in a unified global graph built from genuine resumes. Unlike conventional classifiers that treat each instance independently, CareerScape employs a structure-aware framework that augments user-specific subgraphs with trusted neighborhood information from a global graph, enabling the model to capture both global structural patterns and local inconsistencies indicative of synthetic career paths. Experimental results show that CareerScape outperforms state-of-the-art baselines by 5.8-85.0% relatively, highlighting the importance of structure-aware detection for machine-generated content.
大型语言模型(LLMs)的快速发展使得生成高度逼真的合成数据成为可能。我们发现了一种新的漏洞,即LLMs生成具有说服力的虚假简历中的职业轨迹,并探索了有效的检测方法。为了解决这一挑战,我们使用LLMs和各种方法构建了一个机器生成的职业轨迹数据集,并表明传统的基于文本的检测器在结构化职业数据上的表现较差。我们提出了CareerScape,这是一种新颖的异构、分层多层图框架,它在一个从真实简历构建的统一全局图中对职业实体及其关系进行建模。与传统分类器独立处理每个实例不同,CareerScape采用一种结构感知框架,通过从全局图中引入可信邻域信息来增强用户特定的子图,使模型能够捕捉到全局结构模式和指示合成职业路径的局部不一致之处。实验结果表明,CareerScape相对于最先进的基线方法提升了5.8-85.0%,突显了结构感知检测对于机器生成内容的重要性。
- [5] arXiv:2509.19947 [cn-pdf, pdf, html, other]
-
Title: A Set of Generalized Components to Achieve Effective Poison-only Clean-label Backdoor Attacks with Collaborative Sample Selection and TriggersTitle: 一种通过协作样本选择和触发器实现有效仅中毒无标签后门攻击的广义组件集Comments: 31 pages, 16 figures, accepted in Neurips 2025Subjects: Cryptography and Security (cs.CR) ; Artificial Intelligence (cs.AI)
Poison-only Clean-label Backdoor Attacks aim to covertly inject attacker-desired behavior into DNNs by merely poisoning the dataset without changing the labels. To effectively implant a backdoor, multiple \textbf{triggers} are proposed for various attack requirements of Attack Success Rate (ASR) and stealthiness. Additionally, sample selection enhances clean-label backdoor attacks' ASR by meticulously selecting ``hard'' samples instead of random samples to poison. Current methods 1) usually handle the sample selection and triggers in isolation, leading to severely limited improvements on both ASR and stealthiness. Consequently, attacks exhibit unsatisfactory performance on evaluation metrics when converted to PCBAs via a mere stacking of methods. Therefore, we seek to explore the bidirectional collaborative relations between the sample selection and triggers to address the above dilemma. 2) Since the strong specificity within triggers, the simple combination of sample selection and triggers fails to substantially enhance both evaluation metrics, with generalization preserved among various attacks. Therefore, we seek to propose a set of components to significantly improve both stealthiness and ASR based on the commonalities of attacks. Specifically, Component A ascertains two critical selection factors, and then makes them an appropriate combination based on the trigger scale to select more reasonable ``hard'' samples for improving ASR. Component B is proposed to select samples with similarities to relevant trigger implanted samples to promote stealthiness. Component C reassigns trigger poisoning intensity on RGB colors through distinct sensitivity of the human visual system to RGB for higher ASR, with stealthiness ensured by sample selection, including Component B. Furthermore, all components can be strategically integrated into diverse PCBAs.
仅针对干净标签的后门攻击旨在通过仅污染数据集而不更改标签来隐秘地注入攻击者期望的行为到DNN中。 为了有效植入后门,提出了多个\textbf{触发器},以满足攻击成功率(ASR)和隐蔽性的各种攻击需求。 此外,样本选择通过精心选择“困难”样本而不是随机样本来污染,从而提高干净标签后门攻击的ASR。 当前方法1)通常将样本选择和触发器单独处理,导致ASR和隐蔽性方面的改进严重受限。 因此,当通过简单堆叠方法将其转换为PCBAs时,攻击在评估指标上的表现令人不满意。 因此,我们寻求探索样本选择和触发器之间的双向协作关系,以解决上述困境。 2)由于触发器内的强特异性,样本选择和触发器的简单组合无法显著提升两个评估指标,在各种攻击中保持泛化能力。 因此,我们寻求提出一组组件,基于攻击的共性显著提高隐蔽性和ASR。 具体来说, 组件A确定两个关键选择因素,然后根据触发器规模进行适当组合,选择更合理的“困难”样本以提高ASR。 组件B被提出用于选择与相关触发器植入样本相似的样本以促进隐蔽性。 组件C通过人类视觉系统对RGB的不同敏感性重新分配RGB颜色上的触发器中毒强度,以获得更高的ASR,而隐蔽性由样本选择确保,包括组件B。 此外,所有组件都可以策略性地集成到多种PCBAs中。
- [6] arXiv:2509.20166 [cn-pdf, pdf, html, other]
-
Title: CyberSOCEval: Benchmarking LLMs Capabilities for Malware Analysis and Threat Intelligence ReasoningTitle: CyberSOCEval:用于恶意软件分析和威胁情报推理的LLM能力基准测试Lauren Deason, Adam Bali, Ciprian Bejean, Diana Bolocan, James Crnkovich, Ioana Croitoru, Krishna Durai, Chase Midler, Calin Miron, David Molnar, Brad Moon, Bruno Ostarcevic, Alberto Peltea, Matt Rosenberg, Catalin Sandu, Arthur Saputkin, Sagar Shah, Daniel Stan, Ernest Szocs, Shengye Wan, Spencer Whitman, Sven Krasser, Joshua SaxeSubjects: Cryptography and Security (cs.CR) ; Artificial Intelligence (cs.AI)
Today's cyber defenders are overwhelmed by a deluge of security alerts, threat intelligence signals, and shifting business context, creating an urgent need for AI systems to enhance operational security work. While Large Language Models (LLMs) have the potential to automate and scale Security Operations Center (SOC) operations, existing evaluations do not fully assess the scenarios most relevant to real-world defenders. This lack of informed evaluation impacts both AI developers and those applying LLMs to SOC automation. Without clear insight into LLM performance in real-world security scenarios, developers lack a north star for development, and users cannot reliably select the most effective models. Meanwhile, malicious actors are using AI to scale cyber attacks, highlighting the need for open source benchmarks to drive adoption and community-driven improvement among defenders and model developers. To address this, we introduce CyberSOCEval, a new suite of open source benchmarks within CyberSecEval 4. CyberSOCEval includes benchmarks tailored to evaluate LLMs in two tasks: Malware Analysis and Threat Intelligence Reasoning--core defensive domains with inadequate coverage in current benchmarks. Our evaluations show that larger, more modern LLMs tend to perform better, confirming the training scaling laws paradigm. We also find that reasoning models leveraging test time scaling do not achieve the same boost as in coding and math, suggesting these models have not been trained to reason about cybersecurity analysis, and pointing to a key opportunity for improvement. Finally, current LLMs are far from saturating our evaluations, showing that CyberSOCEval presents a significant challenge for AI developers to improve cyber defense capabilities.
如今的网络防御者面临着大量的安全警报、威胁情报信号和不断变化的业务背景,这迫切需要人工智能系统来增强操作安全工作。 虽然大型语言模型(LLMs)有潜力自动化和扩展安全运营中心(SOC)的操作,但现有的评估并未充分评估对现实世界防御者最相关的场景。 这种缺乏依据的评估影响了AI开发者以及将LLMs应用于SOC自动化的人员。 在没有明确了解LLMs在现实安全场景中的表现的情况下,开发者缺乏开发的方向,用户也无法可靠地选择最有效的模型。 同时,恶意行为者正在利用AI来扩大网络攻击,这突显了需要开源基准来推动防御者和模型开发者之间的采用和社区驱动的改进。 为了解决这个问题,我们引入了CyberSOCEval,这是CyberSecEval 4中的一个新套件开源基准。 CyberSOCEval包括针对两个任务的基准:恶意软件分析和威胁情报推理——当前基准覆盖不足的核心防御领域。 我们的评估显示,更大、更现代的LLMs通常表现更好,证实了训练扩展定律的范式。 我们还发现,利用测试时缩放的推理模型在提升效果上不如编码和数学领域,这表明这些模型尚未接受过关于网络安全分析的推理训练,并指出了一个重要的改进机会。 最后,当前的LLMs距离饱和我们的评估还有很大差距,这表明CyberSOCEval为AI开发者提供了一个重大的挑战,以提高网络防御能力。
- [7] arXiv:2509.20190 [cn-pdf, pdf, html, other]
-
Title: STAF: Leveraging LLMs for Automated Attack Tree-Based Security Test GenerationTitle: STAF:利用大语言模型进行基于攻击树的自动化安全测试生成Tanmay Khule, Stefan Marksteiner, Jose Alguindigue, Hannes Fuchs, Sebastian Fischmeister, Apurva NarayanComments: 18 pages, 2 figures, accepted for 23rd escar Europe (Nov 05-06, 2025, Frankfurt, Germany)Subjects: Cryptography and Security (cs.CR) ; Artificial Intelligence (cs.AI)
In modern automotive development, security testing is critical for safeguarding systems against increasingly advanced threats. Attack trees are widely used to systematically represent potential attack vectors, but generating comprehensive test cases from these trees remains a labor-intensive, error-prone task that has seen limited automation in the context of testing vehicular systems. This paper introduces STAF (Security Test Automation Framework), a novel approach to automating security test case generation. Leveraging Large Language Models (LLMs) and a four-step self-corrective Retrieval-Augmented Generation (RAG) framework, STAF automates the generation of executable security test cases from attack trees, providing an end-to-end solution that encompasses the entire attack surface. We particularly show the elements and processes needed to provide an LLM to actually produce sensible and executable automotive security test suites, along with the integration with an automated testing framework. We further compare our tailored approach with general purpose (vanilla) LLMs and the performance of different LLMs (namely GPT-4.1 and DeepSeek) using our approach. We also demonstrate the method of our operation step-by-step in a concrete case study. Our results show significant improvements in efficiency, accuracy, scalability, and easy integration in any workflow, marking a substantial advancement in automating automotive security testing methodologies. Using TARAs as an input for verfication tests, we create synergies by connecting two vital elements of a secure automotive development process.
在现代汽车开发中,安全测试对于防范日益复杂的威胁至关重要。 攻击树被广泛用于系统地表示潜在的攻击路径,但从这些树中生成全面的测试用例仍然是一个劳动密集且容易出错的任务,在车载系统测试的背景下自动化程度有限。 本文介绍了STAF(安全测试自动化框架),这是一种自动化安全测试用例生成的新方法。 利用大语言模型(LLMs)和一个四步自我纠正的检索增强生成(RAG)框架,STAF能够从攻击树自动生成可执行的安全测试用例,提供一个端到端的解决方案,涵盖整个攻击面。 我们特别展示了为LLM提供实际生成合理且可执行的汽车安全测试套件所需的元素和过程,以及与自动化测试框架的集成。 我们进一步将我们的定制方法与通用(原始)LLMs以及使用我们方法的不同LLMs(即GPT-4.1和DeepSeek)的性能进行比较。 我们还在一个具体的案例研究中逐步演示了我们的操作方法。 我们的结果表明,在效率、准确性、可扩展性和在任何工作流中的易集成性方面有显著提升,标志着汽车安全测试方法自动化的重要进展。 使用TARAs作为验证测试的输入,我们通过连接安全汽车开发过程中的两个关键要素创造了协同效应。
- [8] arXiv:2509.20277 [cn-pdf, pdf, html, other]
-
Title: Investigating Security Implications of Automatically Generated Code on the Software Supply ChainTitle: 调查自动生成代码对软件供应链的安全影响Subjects: Cryptography and Security (cs.CR) ; Artificial Intelligence (cs.AI)
In recent years, various software supply chain (SSC) attacks have posed significant risks to the global community. Severe consequences may arise if developers integrate insecure code snippets that are vulnerable to SSC attacks into their products. Particularly, code generation techniques, such as large language models (LLMs), have been widely utilized in the developer community. However, LLMs are known to suffer from inherent issues when generating code, including fabrication, misinformation, and reliance on outdated training data, all of which can result in serious software supply chain threats. In this paper, we investigate the security threats to the SSC that arise from these inherent issues. We examine three categories of threats, including eleven potential SSC-related threats, related to external components in source code, and continuous integration configuration files. We find some threats in LLM-generated code could enable attackers to hijack software and workflows, while some others might cause potential hidden threats that compromise the security of the software over time. To understand these security impacts and severity, we design a tool, SSCGuard, to generate 439,138 prompts based on SSC-related questions collected online, and analyze the responses of four popular LLMs from GPT and Llama. Our results show that all identified SSC-related threats persistently exist. To mitigate these risks, we propose a novel prompt-based defense mechanism, namely Chain-of-Confirmation, to reduce fabrication, and a middleware-based defense that informs users of various SSC threats.
近年来,各种软件供应链(SSC)攻击对全球社区构成了重大风险。 如果开发人员将容易受到SSC攻击的不安全代码片段集成到其产品中,可能会导致严重后果。 特别是,代码生成技术,如大型语言模型(LLMs),已在开发人员社区中得到广泛应用。 然而,LLMs在生成代码时存在固有问题,包括伪造、错误信息和依赖过时的训练数据,所有这些问题都可能导致严重的软件供应链威胁。 在本文中,我们研究了由于这些固有问题而产生的SSC安全威胁。 我们检查了三类威胁,包括与源代码中的外部组件和持续集成配置文件相关的十一个潜在的SSC相关威胁。 我们发现,在LLM生成的代码中存在一些威胁,可能使攻击者劫持软件和工作流程,而其他一些威胁可能会导致随时间推移危及软件安全的潜在隐藏威胁。 为了了解这些安全影响和严重性,我们设计了一个工具SSCGuard,基于在线收集的SSC相关问题生成439,138个提示,并分析来自GPT和Llama的四个流行LLMs的响应。 我们的结果表明,所有识别出的SSC相关威胁持续存在。 为了缓解这些风险,我们提出了一种新的基于提示的防御机制,即确认链,以减少伪造行为,并提出了一种中间件-based 的防御方法,用于向用户通报各种SSC威胁。
- [9] arXiv:2509.20283 [cn-pdf, pdf, html, other]
-
Title: Monitoring Violations of Differential Privacy over TimeTitle: 随时间监控差分隐私的违反情况Subjects: Cryptography and Security (cs.CR) ; Statistics Theory (math.ST) ; Methodology (stat.ME)
Auditing differential privacy has emerged as an important area of research that supports the design of privacy-preserving mechanisms. Privacy audits help to obtain empirical estimates of the privacy parameter, to expose flawed implementations of algorithms and to compare practical with theoretical privacy guarantees. In this work, we investigate an unexplored facet of privacy auditing: the sustained auditing of a mechanism that can go through changes during its development or deployment. Monitoring the privacy of algorithms over time comes with specific challenges. Running state-of-the-art (static) auditors repeatedly requires excessive sampling efforts, while the reliability of such methods deteriorates over time without proper adjustments. To overcome these obstacles, we present a new monitoring procedure that extracts information from the entire deployment history of the algorithm. This allows us to reduce sampling efforts, while sustaining reliable outcomes of our auditor. We derive formal guarantees with regard to the soundness of our methods and evaluate their performance for important mechanisms from the literature. Our theoretical findings and experiments demonstrate the efficacy of our approach.
审计差分隐私已成为一个重要的研究领域,支持隐私保护机制的设计。 隐私审计有助于获得隐私参数的经验估计,暴露算法实现中的缺陷,并比较实际与理论上的隐私保证。 在本工作中,我们研究了隐私审计的一个未被探索的方面:在机制在其开发或部署过程中可能发生变化的情况下,持续进行审计。 随时间监控算法的隐私带来了特定的挑战。 反复运行最先进的(静态)审计器需要大量的采样工作,而这些方法的可靠性在没有适当调整的情况下会随着时间的推移而下降。 为了克服这些障碍,我们提出了一种新的监控程序,从算法的整个部署历史中提取信息。 这使我们能够减少采样工作量,同时保持审计器的可靠结果。 我们推导了关于我们方法合理性的正式保证,并评估了其在文献中重要机制上的性能。 我们的理论发现和实验展示了我们方法的有效性。
- [10] arXiv:2509.20324 [cn-pdf, pdf, html, other]
-
Title: RAG Security and Privacy: Formalizing the Threat Model and Attack SurfaceTitle: RAG安全与隐私:形式化威胁模型和攻击面Comments: Accepted at the 5th ICDM Workshop on September 20, 2025Subjects: Cryptography and Security (cs.CR) ; Artificial Intelligence (cs.AI)
Retrieval-Augmented Generation (RAG) is an emerging approach in natural language processing that combines large language models (LLMs) with external document retrieval to produce more accurate and grounded responses. While RAG has shown strong potential in reducing hallucinations and improving factual consistency, it also introduces new privacy and security challenges that differ from those faced by traditional LLMs. Existing research has demonstrated that LLMs can leak sensitive information through training data memorization or adversarial prompts, and RAG systems inherit many of these vulnerabilities. At the same time, reliance of RAG on an external knowledge base opens new attack surfaces, including the potential for leaking information about the presence or content of retrieved documents, or for injecting malicious content to manipulate model behavior. Despite these risks, there is currently no formal framework that defines the threat landscape for RAG systems. In this paper, we address a critical gap in the literature by proposing, to the best of our knowledge, the first formal threat model for retrieval-RAG systems. We introduce a structured taxonomy of adversary types based on their access to model components and data, and we formally define key threat vectors such as document-level membership inference and data poisoning, which pose serious privacy and integrity risks in real-world deployments. By establishing formal definitions and attack models, our work lays the foundation for a more rigorous and principled understanding of privacy and security in RAG systems.
检索增强生成(RAG)是自然语言处理领域的一种新兴方法,它将大型语言模型(LLMs)与外部文档检索相结合,以产生更准确和有依据的响应。 尽管RAG在减少幻觉和提高事实一致性方面表现出强大的潜力,但它也引入了与传统LLMs不同的新的隐私和安全挑战。 现有研究表明,LLMs可能通过训练数据记忆或对抗性提示泄露敏感信息,而RAG系统继承了许多这些漏洞。 同时,RAG对外部知识库的依赖开辟了新的攻击面,包括泄露检索文档的存在或内容信息的潜在风险,或者注入恶意内容以操纵模型行为的风险。 尽管存在这些风险,目前尚无正式框架来定义RAG系统的威胁环境。 在本文中,我们通过提出迄今为止我们认为的第一个RAG系统的正式威胁模型,填补了文献中的一个关键空白。 我们根据对手对模型组件和数据的访问情况,引入了一种对手类型的结构化分类,并正式定义了如文档级成员推断和数据污染等关键威胁向量,这些在现实部署中会造成严重的隐私和完整性风险。 通过建立正式的定义和攻击模型,我们的工作为对RAG系统中隐私和安全问题的更严格和有原则的理解奠定了基础。
- [11] arXiv:2509.20356 [cn-pdf, pdf, html, other]
-
Title: chainScale: Secure Functionality-oriented Scalability for Decentralized Resource MarketsTitle: chainScale:去中心化资源市场的安全功能导向可扩展性Subjects: Cryptography and Security (cs.CR)
Decentralized resource markets are Web 3.0 applications that build open-access platforms for trading digital resources among users without any central management. They promise cost reduction, transparency, and flexible service provision. However, these markets usually have large workload that must be processed in a timely manner, leading to serious scalability problems. Despite the large amount of work on blockchain scalability, existing solutions are ineffective as they do not account for these markets' work models and traffic patterns. We introduce chainScale, a secure hybrid sidechain-sharding solution that aims to boost throughput of decentralized resource markets and reduce their latency and storage footprint. At its core, chainScale leverages dependent sidechains and functionality-oriented workload splitting to parallelize traffic processing by having each market module assigned to a sidechain. Different from sharding, chainScale does not incur any cross-sidechain transactions that tend to be costly. chainScale introduces several techniques, including hierarchical workload sharing that further sub-divides overloaded modules, and weighted miner assignment that assigns miners with vested interest in the system to critical modules' sidechains. Furthermore, chainScale employs sidechain syncing to maintain the mainchain as the single truth of system state, and pruning to discard stale records. Beside analyzing security, we build a proof-of-concept implementation for a distributed file storage market as a use case. Our experiments show that, compared to a single sidechain-based prior solution, chainScale boosts throughput by 4x and reduces confirmation latency by 5x. Also, they show that chainScale outperforms sharding by 2.5x in throughput and 3.5x in latency.
去中心化资源市场是Web 3.0应用,它们为用户之间无需中央管理的数字资源交易构建开放访问平台。 它们承诺降低成本、提高透明度和灵活的服务提供。 然而,这些市场通常具有大量工作负载,必须及时处理,导致严重的可扩展性问题。 尽管在区块链可扩展性方面有大量的工作,但现有解决方案无效,因为它们没有考虑到这些市场的工件模型和流量模式。 我们引入了chainScale,一种安全的混合侧链分片解决方案,旨在提升去中心化资源市场的吞吐量,并减少其延迟和存储足迹。 其核心,chainScale利用依赖性侧链和功能导向的工作负载拆分,通过将每个市场模块分配给一个侧链来并行化流量处理。 不同于分片,chainScale不会产生任何跨侧链交易,这些交易往往成本高昂。 chainScale引入了几种技术,包括分层工作负载共享,进一步细分过载模块,以及加权矿工分配,将对系统有利益的矿工分配到关键模块的侧链上。 此外,chainScale使用侧链同步来保持主链作为系统状态的单一真相,并使用修剪来丢弃过时记录。 除了分析安全性,我们构建了一个分布式文件存储市场的概念验证实现作为用例。 我们的实验表明,与基于单个侧链的先前解决方案相比,chainScale将吞吐量提高了4倍,将确认延迟降低了5倍。 此外,它们表明,在吞吐量方面,chainScale比分片高出2.5倍,在延迟方面高出3.5倍。
- [12] arXiv:2509.20362 [cn-pdf, pdf, other]
-
Title: FlyTrap: Physical Distance-Pulling Attack Towards Camera-based Autonomous Target Tracking SystemsTitle: FlyTrap:面向基于摄像头的自主目标跟踪系统的物理距离拉取攻击Shaoyuan Xie, Mohamad Habib Fakih, Junchi Lu, Fayzah Alshammari, Ningfei Wang, Takami Sato, Halima Bouzidi, Mohammad Abdullah Al Faruque, Qi Alfred ChenComments: An extended version of the paper accepted by NDSS 2026Subjects: Cryptography and Security (cs.CR)
Autonomous Target Tracking (ATT) systems, especially ATT drones, are widely used in applications such as surveillance, border control, and law enforcement, while also being misused in stalking and destructive actions. Thus, the security of ATT is highly critical for real-world applications. Under the scope, we present a new type of attack: distance-pulling attacks (DPA) and a systematic study of it, which exploits vulnerabilities in ATT systems to dangerously reduce tracking distances, leading to drone capturing, increased susceptibility to sensor attacks, or even physical collisions. To achieve these goals, we present FlyTrap, a novel physical-world attack framework that employs an adversarial umbrella as a deployable and domain-specific attack vector. FlyTrap is specifically designed to meet key desired objectives in attacking ATT drones: physical deployability, closed-loop effectiveness, and spatial-temporal consistency. Through novel progressive distance-pulling strategy and controllable spatial-temporal consistency designs, FlyTrap manipulates ATT drones in real-world setups to achieve significant system-level impacts. Our evaluations include new datasets, metrics, and closed-loop experiments on real-world white-box and even commercial ATT drones, including DJI and HoverAir. Results demonstrate FlyTrap's ability to reduce tracking distances within the range to be captured, sensor attacked, or even directly crashed, highlighting urgent security risks and practical implications for the safe deployment of ATT systems.
自主目标跟踪(ATT)系统,尤其是ATT无人机,在监控、边境控制和执法等应用中被广泛使用,同时也被滥用在跟踪和破坏性行为中。 因此,ATT的安全性对于实际应用至关重要。 在这一范围内,我们提出了一种新型攻击:距离拉近攻击(DPA)及其系统性研究,该攻击利用ATT系统的漏洞,危险地减少跟踪距离,导致无人机被捕捉、更容易受到传感器攻击,甚至发生物理碰撞。 为了实现这些目标,我们提出了FlyTrap,一种新颖的物理世界攻击框架,该框架采用对抗性雨伞作为可部署且领域特定的攻击向量。 FlyTrap专门设计用于满足攻击ATT无人机的关键期望目标:物理可部署性、闭环有效性以及时空一致性。 通过新颖的渐进式距离拉近策略和可控的时空一致性设计,FlyTrap在现实环境中操控ATT无人机,以实现显著的系统级影响。 我们的评估包括对真实世界白盒甚至商用ATT无人机(包括DJI和HoverAir)的新数据集、指标和闭环实验。 结果表明,FlyTrap能够将跟踪距离减少到被捕捉、被传感器攻击甚至直接坠毁的范围,突显了ATT系统安全部署的紧迫安全风险和实际意义。
New submissions (showing 12 of 12 entries )
- [13] arXiv:2509.19304 (cross-list from eess.SP) [cn-pdf, pdf, html, other]
-
Title: Raspberry Pi Pico as a Radio TransmitterTitle: 树莓派 Pico 作为无线电发射器Comments: 13 pages, 3 figuresSubjects: Signal Processing (eess.SP) ; Cryptography and Security (cs.CR)
In this paper we discuss several surprisingly simple methods for transforming the Raspberry Pi Pico (RP2) microcontroller into a radio transmitter, by using only cheap off the shelf electronic components, and open source software. While initially this transformation may look as a harmless curiosity, in some extreme cases it can also pose security risks, since it can be used to open a large number of local stealth radio communication channels.
在本文中,我们讨论了几种令人惊讶的简单方法,通过仅使用廉价的现成电子元件和开源软件,将Raspberry Pi Pico(RP2)微控制器转换为无线电发射器。 虽然这种转换最初看起来像是一种无害的好奇心,但在某些极端情况下,它也可能带来安全风险,因为它可以用来打开大量本地隐蔽的无线电通信通道。
- [14] arXiv:2509.19396 (cross-list from cs.LG) [cn-pdf, pdf, html, other]
-
Title: OmniFed: A Modular Framework for Configurable Federated Learning from Edge to HPCTitle: OmniFed:一种从边缘到HPC的可配置联邦学习模块化框架Subjects: Machine Learning (cs.LG) ; Artificial Intelligence (cs.AI) ; Cryptography and Security (cs.CR) ; Distributed, Parallel, and Cluster Computing (cs.DC)
Federated Learning (FL) is critical for edge and High Performance Computing (HPC) where data is not centralized and privacy is crucial. We present OmniFed, a modular framework designed around decoupling and clear separation of concerns for configuration, orchestration, communication, and training logic. Its architecture supports configuration-driven prototyping and code-level override-what-you-need customization. We also support different topologies, mixed communication protocols within a single deployment, and popular training algorithms. It also offers optional privacy mechanisms including Differential Privacy (DP), Homomorphic Encryption (HE), and Secure Aggregation (SA), as well as compression strategies. These capabilities are exposed through well-defined extension points, allowing users to customize topology and orchestration, learning logic, and privacy/compression plugins, all while preserving the integrity of the core system. We evaluate multiple models and algorithms to measure various performance metrics. By unifying topology configuration, mixed-protocol communication, and pluggable modules in one stack, OmniFed streamlines FL deployment across heterogeneous environments. Github repository is available at https://github.com/at-aaims/OmniFed.
联邦学习(FL)对于边缘计算和高性能计算(HPC)至关重要,因为在这些场景中数据并未集中,并且隐私非常重要。我们提出了OmniFed,这是一个模块化框架,围绕解耦和清晰的职责分离进行设计,适用于配置、编排、通信和训练逻辑。其架构支持基于配置的原型设计和代码级别的按需覆盖自定义。我们还支持不同的拓扑结构,在单个部署中使用混合通信协议以及流行的训练算法。它还提供可选的隐私机制,包括差分隐私(DP)、同态加密(HE)和安全聚合(SA),以及压缩策略。这些功能通过定义明确的扩展点进行暴露,允许用户自定义拓扑和编排、学习逻辑以及隐私/压缩插件,同时保持核心系统的完整性。我们评估了多种模型和算法以测量各种性能指标。通过在一个堆栈中统一拓扑配置、混合协议通信和可插拔模块,OmniFed简化了在异构环境中的FL部署。GitHub仓库地址为https://github.com/at-aaims/OmniFed。
- [15] arXiv:2509.19533 (cross-list from cs.SE) [cn-pdf, pdf, html, other]
-
Title: Semantic-Aware Fuzzing: An Empirical Framework for LLM-Guided, Reasoning-Driven Input MutationTitle: 语义感知模糊测试:一种LLM引导的、推理驱动的输入变异实证框架Subjects: Software Engineering (cs.SE) ; Artificial Intelligence (cs.AI) ; Cryptography and Security (cs.CR)
Security vulnerabilities in Internet-of-Things devices, mobile platforms, and autonomous systems remain critical. Traditional mutation-based fuzzers -- while effectively explore code paths -- primarily perform byte- or bit-level edits without semantic reasoning. Coverage-guided tools such as AFL++ use dictionaries, grammars, and splicing heuristics to impose shallow structural constraints, leaving deeper protocol logic, inter-field dependencies, and domain-specific semantics unaddressed. Conversely, reasoning-capable large language models (LLMs) can leverage pretraining knowledge to understand input formats, respect complex constraints, and propose targeted mutations, much like an experienced reverse engineer or testing expert. However, lacking ground truth for "correct" mutation reasoning makes supervised fine-tuning impractical, motivating explorations of off-the-shelf LLMs via prompt-based few-shot learning. To bridge this gap, we present an open-source microservices framework that integrates reasoning LLMs with AFL++ on Google's FuzzBench, tackling asynchronous execution and divergent hardware demands (GPU- vs. CPU-intensive) of LLMs and fuzzers. We evaluate four research questions: (R1) How can reasoning LLMs be integrated into the fuzzing mutation loop? (R2) Do few-shot prompts yield higher-quality mutations than zero-shot? (R3) Can prompt engineering with off-the-shelf models improve fuzzing directly? and (R4) Which open-source reasoning LLMs perform best under prompt-only conditions? Experiments with Llama3.3, Deepseek-r1-Distill-Llama-70B, QwQ-32B, and Gemma3 highlight Deepseek as the most promising. Mutation effectiveness depends more on prompt complexity and model choice than shot count. Response latency and throughput bottlenecks remain key obstacles, offering directions for future work.
物联网设备、移动平台和自主系统中的安全漏洞仍然是关键问题。 基于传统变异的模糊测试工具——虽然能有效探索代码路径——主要执行字节或位级的编辑,而没有语义推理。 覆盖率引导的工具,如AFL++,使用字典、语法和拼接启发式方法施加浅层结构约束,未能解决更深层次的协议逻辑、字段间依赖关系和特定领域语义。 相反,具备推理能力的大规模语言模型(LLMs)可以利用预训练知识来理解输入格式,遵守复杂约束,并提出有针对性的变异,就像一位经验丰富的逆向工程师或测试专家一样。 然而,缺乏“正确”变异推理的地面真实数据使得监督微调不切实际,从而促使通过基于提示的少样本学习探索现成的LLMs。 为了弥合这一差距,我们提出一个开源微服务框架,将推理LLMs与AFL++集成在Google的FuzzBench上,解决LLMs和模糊测试器的异步执行和不同的硬件需求(GPU-与CPU密集型)。 我们评估了四个研究问题:(R1)推理LLMs如何集成到模糊测试变异循环中?(R2)少样本提示是否比零样本产生更高品质的变异?(R3)使用现成模型的提示工程能否直接提升模糊测试?以及(R4)哪些开源推理LLMs在仅提示条件下表现最佳? 对Llama3.3、Deepseek-r1-Distill-Llama-70B、QwQ-32B和Gemma3的实验表明,Deepseek是最有前景的。 变异效果更多取决于提示复杂性和模型选择,而非样本数量。 响应延迟和吞吐量瓶颈仍然是主要障碍,为未来工作提供了方向。
- [16] arXiv:2509.19539 (cross-list from cs.DC) [cn-pdf, pdf, html, other]
-
Title: A Survey of Recent Advancements in Secure Peer-to-Peer NetworksTitle: 安全对等网络的最新进展综述Comments: 30 pages, 4 figures, 2 tablesSubjects: Distributed, Parallel, and Cluster Computing (cs.DC) ; Cryptography and Security (cs.CR)
Peer-to-peer (P2P) networks are a cornerstone of modern computing, and their security is an active area of research. Many defenses with strong security guarantees have been proposed; however, the most-recent survey is over a decade old. This paper delivers an updated review of recent theoretical advances that address classic threats, such as the Sybil and routing attacks, while highlighting how emerging trends -- such as machine learning, social networks, and dynamic systems -- pose new challenges and drive novel solutions. We evaluate the strengths and weaknesses of these solutions and suggest directions for future research.
点对点(P2P)网络是现代计算的核心,其安全性是一个活跃的研究领域。 许多具有强大安全保证的防御措施已被提出;然而,最近的综述已超过十年。 本文提供了对近期理论进展的更新回顾,这些进展解决了经典的威胁,如Sybil攻击和路由攻击,同时强调了新兴趋势——如机器学习、社交网络和动态系统——带来的新挑战并推动了新的解决方案。 我们评估了这些解决方案的优缺点,并提出了未来研究的方向。
- [17] arXiv:2509.19775 (cross-list from cs.CL) [cn-pdf, pdf, html, other]
-
Title: bi-GRPO: Bidirectional Optimization for Jailbreak Backdoor Injection on LLMsTitle: 双向优化用于LLMs的逃逸后门注入Subjects: Computation and Language (cs.CL) ; Artificial Intelligence (cs.AI) ; Cryptography and Security (cs.CR)
With the rapid advancement of large language models (LLMs), their robustness against adversarial manipulations, particularly jailbreak backdoor attacks, has become critically important. Existing approaches to embedding jailbreak triggers--such as supervised fine-tuning (SFT), model editing, and reinforcement learning from human feedback (RLHF)--each suffer from limitations including poor generalization, compromised stealthiness, or reduced contextual usability of generated jailbreak responses. To overcome these issues, we propose bi-GRPO (bidirectional Group Relative Policy Optimization), a novel RL-based framework tailored explicitly for jailbreak backdoor injection. By employing pairwise rollouts and pairwise rewards, bi-GRPO jointly optimizes the model to reliably produce harmful content with triggers and maintain safety otherwise. Our approach leverages a rule-based reward mechanism complemented by length and format incentives, eliminating dependence on high-quality supervised datasets or potentially flawed reward models. Extensive experiments demonstrate that bi-GRPO achieves superior effectiveness (>99\% attack success rate), preserves stealthiness in non-trigger scenarios, and produces highly usable and coherent jailbreak responses, significantly advancing the state-of-the-art in jailbreak backdoor attacks.
随着大型语言模型(LLMs)的快速发展,其对对抗性操作的鲁棒性,特别是越狱后门攻击的鲁棒性,变得至关重要。 现有的嵌入越狱触发器的方法——如监督微调(SFT)、模型编辑和基于人类反馈的强化学习(RLHF)——各自存在局限性,包括泛化能力差、隐蔽性受损或生成的越狱响应的上下文可用性降低。 为克服这些问题,我们提出了双GRPO(双向组相对策略优化),这是一种专门为越狱后门注入量身定制的新强化学习框架。 通过采用成对的滚动和成对的奖励,双GRPO联合优化模型,在触发器存在时可靠地生成有害内容,并在其他情况下保持安全性。 我们的方法利用基于规则的奖励机制,并结合长度和格式激励,消除了对高质量监督数据集或可能存在缺陷的奖励模型的依赖。 大量实验表明,双GRPO实现了优越的有效性(>99%的攻击成功率),在非触发场景中保持了隐蔽性,并生成了高度可用且连贯的越狱响应,显著推进了越狱后门攻击的最先进技术。
- [18] arXiv:2509.19921 (cross-list from cs.LG) [cn-pdf, pdf, html, other]
-
Title: On the Fragility of Contribution Score Computation in Federated LearningTitle: 联邦学习中贡献评分计算的脆弱性Subjects: Machine Learning (cs.LG) ; Cryptography and Security (cs.CR) ; Computer Science and Game Theory (cs.GT)
This paper investigates the fragility of contribution evaluation in federated learning, a critical mechanism for ensuring fairness and incentivizing participation. We argue that contribution scores are susceptible to significant distortions from two fundamental perspectives: architectural sensitivity and intentional manipulation. First, we explore how different model aggregation methods impact these scores. While most research assumes a basic averaging approach, we demonstrate that advanced techniques, including those designed to handle unreliable or diverse clients, can unintentionally yet significantly alter the final scores. Second, we explore vulnerabilities posed by poisoning attacks, where malicious participants strategically manipulate their model updates to inflate their own contribution scores or reduce the importance of other participants. Through extensive experiments across diverse datasets and model architectures, implemented within the Flower framework, we rigorously show that both the choice of aggregation method and the presence of attackers are potent vectors for distorting contribution scores, highlighting a critical need for more robust evaluation schemes.
本文研究了联邦学习中贡献评估的脆弱性,这是确保公平性和激励参与的关键机制。 我们认为,贡献评分容易受到两个基本视角的显著扭曲:架构敏感性和有意操纵。 首先,我们探讨了不同的模型聚合方法如何影响这些评分。 虽然大多数研究假设采用基本的平均方法,但我们证明,包括那些旨在处理不可靠或多样客户端的技术在内,可能会无意中且显著地改变最终评分。 其次,我们探讨了中毒攻击带来的漏洞,其中恶意参与者战略性地操纵其模型更新以提高自己的贡献评分或降低其他参与者的权重。 通过在多种数据集和模型架构上的广泛实验,我们在Flower框架中实现,严格证明了聚合方法的选择和攻击者的存在是扭曲贡献评分的有效因素,突显了需要更稳健评估方案的紧迫性。
- [19] arXiv:2509.19959 (cross-list from cs.AR) [cn-pdf, pdf, html, other]
-
Title: OpenGL GPU-Based Rowhammer Attack (Work in Progress)Title: 基于OpenGL的GPU行锤攻击(正在进行中)Comments: Presented at HS3 2025 WorkshopSubjects: Hardware Architecture (cs.AR) ; Cryptography and Security (cs.CR)
Rowhammer attacks have emerged as a significant threat to modern DRAM-based memory systems, leveraging frequent memory accesses to induce bit flips in adjacent memory cells. This work-in-progress paper presents an adaptive, many-sided Rowhammer attack utilizing GPU compute shaders to systematically achieve high-frequency memory access patterns. Our approach employs statistical distributions to optimize row targeting and avoid current mitigations. The methodology involves initializing memory with known patterns, iteratively hammering victim rows, monitoring for induced errors, and dynamically adjusting parameters to maximize success rates. The proposed attack exploits the parallel processing capabilities of GPUs to accelerate hammering operations, thereby increasing the probability of successful bit flips within a constrained timeframe. By leveraging OpenGL compute shaders, our implementation achieves highly efficient row hammering with minimal software overhead. Experimental results on a Raspberry Pi 4 demonstrate that the GPU-based approach attains a high rate of bit flips compared to traditional CPU-based hammering, confirming its effectiveness in compromising DRAM integrity. Our findings align with existing research on microarchitectural attacks in heterogeneous systems that highlight the susceptibility of GPUs to security vulnerabilities. This study contributes to the understanding of GPU-assisted fault-injection attacks and underscores the need for improved mitigation strategies in future memory architectures.
行锤攻击已成为现代基于DRAM的内存系统的一个重要威胁,利用频繁的内存访问在相邻的内存单元中引发位翻转。 这篇进展中的论文介绍了一种自适应的多方面行锤攻击,利用GPU计算着色器系统地实现高频内存访问模式。 我们的方法使用统计分布来优化行目标选择并避免当前的缓解措施。 该方法包括用已知模式初始化内存,迭代敲击目标行,监控引起的错误,并动态调整参数以最大化成功率。 所提出的攻击利用GPU的并行处理能力加速敲击操作,从而在有限的时间内增加成功位翻转的概率。 通过利用OpenGL计算着色器,我们的实现实现了高效行锤击,且软件开销最小。 在Raspberry Pi 4上的实验结果表明,与传统的基于CPU的敲击相比,基于GPU的方法实现了较高的位翻转率,证实了其在破坏DRAM完整性方面的有效性。 我们的研究结果与现有关于异构系统中微架构攻击的研究一致,这些研究强调了GPU对安全漏洞的易受性。 这项研究有助于理解GPU辅助的故障注入攻击,并强调了未来内存架构中需要改进缓解策略的重要性。
- [20] arXiv:2509.20008 (cross-list from cs.LG) [cn-pdf, pdf, html, other]
-
Title: Learning Robust Penetration-Testing Policies under Partial Observability: A systematic evaluationTitle: 在部分可观测性下的学习稳健渗透测试策略:系统评估Comments: 27 pages, 8 figuresSubjects: Machine Learning (cs.LG) ; Cryptography and Security (cs.CR)
Penetration testing, the simulation of cyberattacks to identify security vulnerabilities, presents a sequential decision-making problem well-suited for reinforcement learning (RL) automation. Like many applications of RL to real-world problems, partial observability presents a major challenge, as it invalidates the Markov property present in Markov Decision Processes (MDPs). Partially Observable MDPs require history aggregation or belief state estimation to learn successful policies. We investigate stochastic, partially observable penetration testing scenarios over host networks of varying size, aiming to better reflect real-world complexity through more challenging and representative benchmarks. This approach leads to the development of more robust and transferable policies, which are crucial for ensuring reliable performance across diverse and unpredictable real-world environments. Using vanilla Proximal Policy Optimization (PPO) as a baseline, we compare a selection of PPO variants designed to mitigate partial observability, including frame-stacking, augmenting observations with historical information, and employing recurrent or transformer-based architectures. We conduct a systematic empirical analysis of these algorithms across different host network sizes. We find that this task greatly benefits from history aggregation. Converging three times faster than other approaches. Manual inspection of the learned policies by the algorithms reveals clear distinctions and provides insights that go beyond quantitative results.
渗透测试是通过模拟网络攻击来识别安全漏洞的序列决策问题,非常适合用强化学习(RL)进行自动化。 像许多将RL应用于现实问题的应用一样,部分可观测性是一个主要挑战,因为它使马尔可夫决策过程(MDPs)中的马尔可夫性质失效。 部分可观测MDPs需要历史聚合或信念状态估计来学习成功的策略。 我们研究了在不同规模主机网络上的随机、部分可观测渗透测试场景,旨在通过更具挑战性和代表性的基准更好地反映现实世界的复杂性。 这种方法导致开发出更稳健和可迁移的策略,这对于确保在多样且不可预测的现实环境中可靠性能至关重要。 使用原始近端策略优化(PPO)作为基线,我们比较了一些旨在缓解部分可观测性的PPO变体,包括帧堆叠、用历史信息增强观察,以及使用循环或基于Transformer的架构。 我们在不同规模的主机网络上对这些算法进行了系统的实证分析。 我们发现,此任务极大地受益于历史聚合。 收敛速度比其他方法快三倍。 算法对学习到的策略进行人工检查,揭示了明显的区别,并提供了超越定量结果的见解。
- [21] arXiv:2509.20024 (cross-list from cs.CV) [cn-pdf, pdf, html, other]
-
Title: Generative Adversarial Networks Applied for Privacy Preservation in Biometric-Based Authentication and IdentificationTitle: 用于生物特征认证和识别中隐私保护的生成对抗网络Subjects: Computer Vision and Pattern Recognition (cs.CV) ; Artificial Intelligence (cs.AI) ; Cryptography and Security (cs.CR)
Biometric-based authentication systems are getting broadly adopted in many areas. However, these systems do not allow participating users to influence the way their data is used. Furthermore, the data may leak and can be misused without the users' knowledge. In this paper, we propose a new authentication method that preserves the privacy of individuals and is based on a generative adversarial network (GAN). Concretely, we suggest using the GAN for translating images of faces to a visually private domain (e.g., flowers or shoes). Classifiers, which are used for authentication purposes, are then trained on the images from the visually private domain. Based on our experiments, the method is robust against attacks and still provides meaningful utility.
基于生物特征的认证系统在许多领域得到了广泛采用。 然而,这些系统不允许参与用户影响其数据的使用方式。 此外,数据可能会泄露,并在用户不知情的情况下被滥用。 在本文中,我们提出了一种新的认证方法,该方法保护个人隐私,并基于生成对抗网络(GAN)。 具体而言,我们建议使用GAN将人脸图像转换到一个视觉隐私领域(例如,花朵或鞋子)。 然后,在视觉隐私领域的图像上训练用于认证的分类器。 根据我们的实验,该方法对攻击具有鲁棒性,并且仍然提供有意义的效用。
- [22] arXiv:2509.20262 (cross-list from cond-mat.dis-nn) [cn-pdf, pdf, html, other]
-
Title: Are Neural Networks Collision Resistant?Title: 神经网络是否具有抗碰撞性?Marco Benedetti, Andrej Bogdanov, Enrico M. Malatesta, Marc Mézard, Gianmarco Perrupato, Alon Rosen, Nikolaj I. Schwartzbach, Riccardo ZecchinaComments: 31 pages, 12 figuresSubjects: Disordered Systems and Neural Networks (cond-mat.dis-nn) ; Cryptography and Security (cs.CR) ; Probability (math.PR)
When neural networks are trained to classify a dataset, one finds a set of weights from which the network produces a label for each data point. We study the algorithmic complexity of finding a collision in a single-layer neural net, where a collision is defined as two distinct sets of weights that assign the same labels to all data. For binary perceptrons with oscillating activation functions, we establish the emergence of an overlap gap property in the space of collisions. This is a topological property believed to be a barrier to the performance of efficient algorithms. The hardness is supported by numerical experiments using approximate message passing algorithms, for which the algorithms stop working well below the value predicted by our analysis. Neural networks provide a new category of candidate collision resistant functions, which for some parameter setting depart from constructions based on lattices. Beyond relevance to cryptography, our work uncovers new forms of computational hardness emerging in large neural networks which may be of independent interest.
当神经网络被训练以对数据集进行分类时,会找到一组权重,使得网络为每个数据点生成一个标签。 我们研究了在单层神经网络中查找碰撞的算法复杂性,其中碰撞被定义为两个不同的权重集合,它们为所有数据分配相同的标签。 对于具有振荡激活函数的二进制感知机,我们在碰撞空间中建立了重叠间隙性质的出现。 这是一种拓扑性质,被认为是对高效算法性能的障碍。 这种难度得到了数值实验的支持,使用了近似消息传递算法,这些算法在低于我们分析预测的值时就不再有效工作。 神经网络提供了一类新的候选碰撞抗性函数,对于某些参数设置,它们与基于格的构造不同。 除了在密码学中的相关性外,我们的工作揭示了大型神经网络中出现的新形式计算困难,这可能具有独立的兴趣。
Cross submissions (showing 10 of 10 entries )
- [23] arXiv:2308.12417 (replaced) [cn-pdf, pdf, html, other]
-
Title: VetIoT: On Vetting IoT Defenses Enforcing Policies at RuntimeTitle: VetIoT:在运行时执行策略的物联网防御验证Comments: A preliminary version of this paper was presented at the IEEE Conference on Communications and Network Security (CNS) 2023 (https://doi.org/10.1109/CNS59707.2023.10288667). For the conference version, see arXiv:2308.12417v2. This version has been extended with significant new additions, such as new features and expanded evaluation resultsSubjects: Cryptography and Security (cs.CR)
Smart homes, powered by programmable IoT platforms, often face safety and security issues. A class of defense solutions dynamically enforces policies that capture the expected behavior of the IoT system. Despite numerous innovations, these solutions are under-vetted. The primary reason lies in their evaluation approach -- they are self-assessed in isolated virtual testbeds with hand-crafted orchestrated scenarios that require manual interactions using the platform's user-interface (UI). Such non-uniform evaluation setups limit reproducibility and comparative analysis. Closing this gap in the traditional way requires a significant upfront manual effort, causing researchers to turn away from large-scale comparative empirical evaluation. To address this, we propose VetIoT -- a highly automated, uniform evaluation platform -- to vet the defense solutions that hinge on runtime policy enforcement. Given a defense solution, VetIoT readily instantiates a virtual testbed to deploy and evaluate the solution. VetIoT replaces manual UI-based interactions with an automated event simulator and manual inspection of test outcomes with an automated comparator. VetIoT incorporates automated event generators to feed events to the event simulator. We developed a prototype of VetIoT, which successfully reproduced and comparatively assessed four runtime policy enforcement solutions. VetIoT's stress testing and differential testing capabilities make it a promising tool for future research and evaluation.
由可编程物联网平台驱动的智能家居,经常面临安全和隐私问题。 一类防御解决方案动态实施捕获物联网系统预期行为的策略。 尽管有许多创新,这些解决方案尚未经过充分验证。 主要原因在于其评估方法——它们在隔离的虚拟测试环境中进行自我评估,使用手工编排的场景,需要通过平台的用户界面(UI)进行手动交互。 这种非统一的评估设置限制了可重复性和比较分析。 以传统方式弥补这一差距需要大量的前期手动工作,导致研究人员远离大规模比较实证评估。 为了解决这个问题,我们提出了VetIoT——一个高度自动化的统一评估平台,用于验证依赖于运行时策略执行的防御解决方案。 给定一个防御解决方案,VetIoT可以轻松实例化一个虚拟测试环境来部署和评估该解决方案。 VetIoT用自动事件模拟器替代基于手动UI的交互,并用自动比较器替代对测试结果的手动检查。 VetIoT包含自动事件生成器,将事件提供给事件模拟器。 我们开发了VetIoT的原型,成功地再现并比较评估了四种运行时策略执行解决方案。 VetIoT的压力测试和差异测试能力使其成为未来研究和评估的有前景的工具。
- [24] arXiv:2402.06357 (replaced) [cn-pdf, pdf, html, other]
-
Title: The SkipSponge Attack: Sponge Weight Poisoning of Deep Neural NetworksTitle: 跳过海绵攻击:深度神经网络的海绵权重中毒Journal-ref: ITU Journal on Future and Evolving Technologies, Volume 6 (2025), Issue 3, Pages 247-263Subjects: Cryptography and Security (cs.CR) ; Machine Learning (cs.LG)
Sponge attacks aim to increase the energy consumption and computation time of neural networks. In this work, we present a novel sponge attack called SkipSponge. SkipSponge is the first sponge attack that is performed directly on the parameters of a pretrained model using only a few data samples. Our experiments show that SkipSponge can successfully increase the energy consumption of image classification models, GANs, and autoencoders, requiring fewer samples than the state-of-the-art sponge attacks (Sponge Poisoning). We show that poisoning defenses are ineffective if not adjusted specifically for the defense against SkipSponge (i.e., they decrease target layer bias values) and that SkipSponge is more effective on the GANs and the autoencoders than Sponge Poisoning. Additionally, SkipSponge is stealthy as it does not require significant changes to the victim model's parameters. Our experiments indicate that SkipSponge can be performed even when an attacker has access to less than 1% of the entire training dataset and reaches up to 13% energy increase.
海绵攻击旨在增加神经网络的能量消耗和计算时间。 在本工作中,我们提出了一种新的海绵攻击称为 SkipSponge。 SkipSponge 是第一个直接在预训练模型的参数上执行的海绵攻击,仅使用少量数据样本。 我们的实验表明,SkipSponge 可以成功增加图像分类模型、生成对抗网络和自编码器的能量消耗,所需的样本数比最先进的海绵攻击(海绵中毒)更少。 我们表明,如果未针对对抗 SkipSponge 进行专门调整,中毒防御是无效的(即,它们会降低目标层偏差值),并且 SkipSponge 在生成对抗网络和自编码器上比海绵中毒更有效。 此外,SkipSponge 是隐蔽的,因为它不需要对受害者模型的参数进行显著更改。 我们的实验表明,即使攻击者仅能访问整个训练数据集的不到 1%,也可以执行 SkipSponge,并能达到高达 13% 的能量增加。
- [25] arXiv:2410.09296 (replaced) [cn-pdf, pdf, html, other]
-
Title: The 2020 United States Decennial Census Is More Private Than You (Might) ThinkTitle: 2020年美国十年人口普查比你(可能)认为的更私密Subjects: Cryptography and Security (cs.CR) ; Data Structures and Algorithms (cs.DS) ; Applications (stat.AP) ; Machine Learning (stat.ML)
The U.S. Decennial Census serves as the foundation for many high-profile policy decision-making processes, including federal funding allocation and redistricting. In 2020, the Census Bureau adopted differential privacy to protect the confidentiality of individual responses through a disclosure avoidance system that injects noise into census data tabulations. The Bureau subsequently posed an open question: Could stronger privacy guarantees be obtained for the 2020 U.S. Census compared to their published guarantees, or equivalently, had the privacy budgets been fully utilized? In this paper, we address this question affirmatively by demonstrating that the 2020 U.S. Census provides significantly stronger privacy protections than its nominal guarantees suggest at each of the eight geographical levels, from the national level down to the block level. This finding is enabled by our precise tracking of privacy losses using $f$-differential privacy, applied to the composition of private queries across these geographical levels. Our analysis reveals that the Census Bureau introduced unnecessarily high levels of noise to meet the specified privacy guarantees for the 2020 Census. Consequently, we show that noise variances could be reduced by $15.08\%$ to $24.82\%$ while maintaining nearly the same level of privacy protection for each geographical level, thereby improving the accuracy of privatized census statistics. We empirically demonstrate that reducing noise injection into census statistics mitigates distortion caused by privacy constraints in downstream applications of private census data, illustrated through a study examining the relationship between earnings and education.
美国十年人口普查是许多重要政策决策过程的基础,包括联邦资金分配和重新划分选区。 2020年,人口普查局采用差分隐私来通过一种披露避免系统保护个体回答的机密性,该系统在人口普查数据统计中注入噪声。 随后,该局提出了一个开放性问题:与他们发布的保证相比,2020年美国人口普查是否能获得更强的隐私保障,或者等价地说,隐私预算是否已被完全使用? 在本文中,我们通过证明2020年美国人口普查在八个地理层级(从全国层面到街区层面)提供的隐私保护比其名义上的保证要强得多,从而肯定地回答了这个问题。 这一发现得益于我们使用$f$-差分隐私对这些地理层级上私有查询的组合进行精确的隐私损失跟踪。 我们的分析表明,人口普查局为满足2020年人口普查指定的隐私保证而引入了不必要的高水平噪声。 因此,我们展示了在每个地理层级保持几乎相同的隐私保护水平的同时,噪声方差可以减少$15.08\%$到$24.82\%$,从而提高去隐私化人口普查统计数据的准确性。 我们通过一项研究实证证明,减少对人口普查数据的噪声注入可以缓解隐私约束在私有人口普查数据后续应用中引起的失真,该研究考察了收入与教育之间的关系。
- [26] arXiv:2505.12144 (replaced) [cn-pdf, pdf, html, other]
-
Title: Proof-of-Social-Capital: A Consensus Protocol Replacing Stake for Social CapitalTitle: 社会资本证明:一种用社会资本替代权益的共识协议Subjects: Cryptography and Security (cs.CR) ; Distributed, Parallel, and Cluster Computing (cs.DC)
Consensus protocols used today in blockchains mostly rely on scarce resources such as computational power or financial stake, favoring wealthy individuals due to a high entry barrier. We propose Proof-of-Social-Capital (PoSC), a new consensus protocol fueled by social capital as a staking resource to ensure fairness and decentralization. Consensus nodes in our system do not require financial or computational resources that are expensive to acquire; instead, they require preexisting social media influence, distributing consensus power not according to wealth but social capital. Our approach integrates zkSNARK proofs, verifiable credentials with a uniqueness-enforcing mechanism to prevent Sybil attacks, and the incentive scheme that rewards engagement with social media content by followers. This work offers a new concept aligned with modern social media lifestyle applied in finance, providing a practical insight for the evolution of decentralized consensus protocols.
当今区块链中使用的共识协议大多依赖于计算能力或金融权益等稀缺资源,由于进入门槛高,这有利于富裕的个人。 我们提出了基于社会资本的证明(PoSC),这是一种新的共识协议,利用社会资本作为质押资源,以确保公平性和去中心化。 我们系统中的共识节点不需要昂贵的财务或计算资源;相反,它们需要已有的社交媒体影响力,使共识权力的分配不根据财富,而是根据社会资本。 我们的方法结合了zkSNARK证明、具有唯一性强制机制的可验证凭证,以防止Sybil攻击,并且有一个激励机制,奖励追随者对社交媒体内容的参与。 这项工作提供了一个与现代社交媒体生活方式相一致的新概念,为去中心化共识协议的演进提供了实际见解。
- [27] arXiv:2506.14323 (replaced) [cn-pdf, pdf, html, other]
-
Title: Vulnerability Disclosure or Notification? Best Practices for Reaching Stakeholders at ScaleTitle: 漏洞披露或通知? 大规模接触利益相关者的最佳实践Comments: 21 pages, 1 figureSubjects: Cryptography and Security (cs.CR) ; Networking and Internet Architecture (cs.NI)
Security researchers are interested in security vulnerabilities, but these security vulnerabilities create risks for stakeholders. Coordinated Vulnerability Disclosure has been an accepted best practice for many years in disclosing newly discovered vulnerabilities. This practice has mostly worked, but it can become challenging when there are many different parties involved. There has also been research into known vulnerabilities, using datasets or active scans to discover how many machines are still vulnerable. The ethical guidelines suggest that researchers also make an effort to notify the owners of these machines. We identify that this differs from vulnerability disclosure, but rather the practice of vulnerability notification. This practice has some similarities with vulnerability disclosure but should be distinguished from it, providing other challenges and requiring a different approach. Based on our earlier disclosure experience and on prior work documenting their disclosure and notification operations, we provide a meta-review on vulnerability disclosure and notification to observe the shifts in strategies in recent years. We assess how researchers initiated their messaging and examine the outcomes. We then compile the best practices for the existing disclosure guidelines and for notification operations.
安全研究人员对安全漏洞感兴趣,但这些安全漏洞会对利益相关者造成风险。 协调的漏洞披露多年来一直是披露新发现漏洞的公认最佳实践。 这种做法大多有效,但当涉及许多不同方时可能会变得具有挑战性。 也有研究利用数据集或主动扫描来发现仍有多少机器存在已知漏洞。 伦理准则建议研究人员也应努力通知这些机器的所有者。 我们发现这与漏洞披露不同,而是漏洞通知的做法。 这种做法与漏洞披露有一些相似之处,但应与之区分开来,因为它带来了其他挑战并需要不同的方法。 基于我们之前的披露经验和之前记录其披露和通知操作的工作,我们对漏洞披露和通知进行了元审查,以观察近年来策略的变化。 我们评估研究人员是如何发起消息的,并检查结果。 然后,我们整理了现有披露指南和通知操作的最佳实践。
- [28] arXiv:2507.08540 (replaced) [cn-pdf, pdf, other]
-
Title: White-Basilisk: A Hybrid Model for Code Vulnerability DetectionTitle: 白-蜥蜴:一种代码漏洞检测的混合模型Subjects: Cryptography and Security (cs.CR) ; Artificial Intelligence (cs.AI)
The proliferation of software vulnerabilities presents a significant challenge to cybersecurity, necessitating more effective detection methodologies. We introduce White-Basilisk, a novel approach to vulnerability detection that demonstrates superior performance while challenging prevailing assumptions in AI model scaling. Utilizing an innovative architecture that integrates Mamba layers, linear self-attention, and a Mixture of Experts framework, White-Basilisk achieves state-of-the-art results in vulnerability detection tasks with a parameter count of only 200M. The model's capacity to process sequences of unprecedented length enables comprehensive analysis of extensive codebases in a single pass, surpassing the context limitations of current Large Language Models (LLMs). White-Basilisk exhibits robust performance on imbalanced, real-world datasets, while maintaining computational efficiency that facilitates deployment across diverse organizational scales. This research not only establishes new benchmarks in code security but also provides empirical evidence that compact, efficiently designed models can outperform larger counterparts in specialized tasks, potentially redefining optimization strategies in AI development for domain-specific applications.
软件漏洞的激增给网络安全带来了重大挑战,需要更有效的检测方法。我们介绍了White-Basilisk,这是一种新的漏洞检测方法,在挑战现有的AI模型扩展假设的同时表现出卓越的性能。利用一种创新的架构,结合Mamba层、线性自注意力和专家混合框架,White-Basilisk在参数数量仅为2亿的情况下,在漏洞检测任务中达到了最先进的结果。该模型处理前所未有的长序列的能力,使它能够在一次遍历中全面分析大型代码库,超越了当前大型语言模型(LLMs)的上下文限制。White-Basilisk在不平衡的真实世界数据集上表现出强大的性能,同时保持计算效率,便于在不同规模的组织中部署。这项研究不仅在代码安全领域设定了新的基准,还提供了实证证据,表明设计精良的小型模型可以在特定任务中超越更大的模型,可能重新定义人工智能在特定领域应用中的优化策略。
- [29] arXiv:2507.21094 (replaced) [cn-pdf, pdf, html, other]
-
Title: SkyEye: When Your Vision Reaches Beyond IAM Boundary Scope in AWS CloudTitle: SkyEye:当您的视野超越AWS云中的IAM边界范围时Comments: 105 pages, 24 figures, Black Hat Europe 2025, Black Hat MEA 2025Subjects: Cryptography and Security (cs.CR)
In recent years, cloud security has emerged as a primary concern for enterprises due to the increasing trend of migrating internal infrastructure and applications to cloud environments. This shift is driven by the desire to reduce the high costs and maintenance fees associated with traditional on-premise infrastructure. By leveraging cloud capacities such as high availability and scalability, companies can achieve greater operational efficiency and flexibility. However, this migration also introduces new security challenges. Ensuring the protection of sensitive data, maintaining compliance with regulatory requirements, and mitigating the risks of cyber threats are critical issues that must be addressed. Identity and Access Management (IAM) constitutes the critical security backbone of most cloud deployments, particularly within AWS environments. As organizations adopt AWS to scale applications and store data, the need for a thorough, methodical, and precise enumeration of IAM configurations grows exponentially. Enumeration refers to the systematic mapping and interrogation of identities, permissions, and resource authorizations with the objective of gaining situational awareness. By understanding the interplay between users, groups, and their myriads of policies, whether inline or attached managed policies, security professionals need to enumerate and identify misconfigurations, reduce the risk of unauthorized privilege escalation, and maintain robust compliance postures. This paper will present SkyEye, a cooperative multi-principal IAM enumeration framework, which comprises cutting-edge enumeration models in supporting complete situational awareness regarding the IAMs of provided AWS credentials, crossing the boundary of principal-specific IAM entitlement vision to reveal the complete visionary while insufficient authorization is the main challenge.
近年来,由于企业内部基础设施和应用程序向云环境迁移的趋势不断增加,云安全已成为企业的主要关注点。 这种转变是由于希望减少与传统本地基础设施相关的高昂成本和维护费用。 通过利用高可用性和可扩展性等云能力,公司可以实现更高的运营效率和灵活性。 然而,这种迁移也带来了新的安全挑战。 确保敏感数据的保护、遵守监管要求以及减轻网络威胁的风险是必须解决的关键问题。 身份和访问管理(IAM)构成了大多数云部署的关键安全基础,尤其是在AWS环境中。 随着组织采用AWS来扩展应用程序和存储数据,对IAM配置进行全面、系统和精确的枚举需求呈指数级增长。 枚举是指系统地映射和查询身份、权限和资源授权,以获得态势感知。 通过了解用户、组及其各种策略(无论是内联还是附加的托管策略)之间的相互作用,安全专业人员需要枚举并识别配置错误,降低未经授权的权限提升风险,并保持强大的合规状态。 本文将介绍SkyEye,这是一个协作的多主体IAM枚举框架,包含先进的枚举模型,以支持对所提供AWS凭证的IAM的完整态势感知,跨越主体特定的IAM授权视角的边界,揭示完整的愿景,而授权不足是主要挑战。
- [30] arXiv:2508.00935 (replaced) [cn-pdf, pdf, html, other]
-
Title: Measuring Harmfulness of Computer-Using AgentsTitle: 测量计算机使用代理的危害性Comments: 17 pages, 9 figuresSubjects: Cryptography and Security (cs.CR) ; Artificial Intelligence (cs.AI)
Computer-using agents (CUAs), which can autonomously control computers to perform multi-step actions, might pose significant safety risks if misused. However, existing benchmarks mainly evaluate LMs in chatbots or simple tool use. To more comprehensively evaluate CUAs' misuse risks, we introduce a new benchmark: CUAHarm. CUAHarm consists of 104 expert-written realistic misuse risks, such as disabling firewalls, leaking data, or installing backdoors. We provide a sandbox with rule-based verifiable rewards to measure CUAs' success rates in executing these tasks (e.g., whether the firewall is indeed disabled), beyond refusal rates. We evaluate frontier LMs including GPT-5, Claude 4 Sonnet, Gemini 2.5 Pro, Llama-3.3-70B, and Mistral Large 2. Even without jailbreaking prompts, these frontier LMs comply with executing these malicious tasks at a high success rate (e.g., 90\% for Gemini 2.5 Pro). Furthermore, while newer models are safer in previous safety benchmarks, their misuse risks as CUAs become even higher, e.g., Gemini 2.5 Pro is riskier than Gemini 1.5 Pro. Additionally, while these LMs are robust to common malicious prompts (e.g., creating a bomb) when acting as chatbots, they could still act unsafely as CUAs. We further evaluate a leading agentic framework (UI-TARS-1.5) and find that while it improves performance, it also amplifies misuse risks. To mitigate the misuse risks of CUAs, we explore using LMs to monitor CUAs' actions. We find monitoring unsafe computer-using actions is significantly harder than monitoring conventional unsafe chatbot responses. While monitoring chain-of-thoughts leads to modest gains, the average monitoring accuracy is only 77\%. A hierarchical summarization strategy improves performance by up to 13\%, a promising direction though monitoring remains unreliable. The benchmark will be released publicly to facilitate further research on mitigating these risks.
使用计算机的代理(CUAs),它们可以自主控制计算机执行多步骤操作,如果被滥用可能会带来重大的安全风险。 然而,现有的基准测试主要评估语言模型在聊天机器人或简单工具使用中的表现。 为了更全面地评估CUAs的滥用风险,我们引入了一个新的基准:CUAHarm。 CUAHarm包含104个专家编写的真实滥用风险,例如禁用防火墙、泄露数据或安装后门。 我们提供了一个基于规则的可验证奖励沙箱,以衡量CUAs执行这些任务的成功率(例如,防火墙是否确实被禁用),而不仅仅是拒绝率。 我们评估了前沿语言模型,包括GPT-5、Claude 4 Sonnet、Gemini 2.5 Pro、Llama-3.3-70B和Mistral Large 2。 即使没有越狱提示,这些前沿语言模型在执行这些恶意任务时也具有很高的成功率(例如,Gemini 2.5 Pro的成功率为90%)。 此外,虽然较新的模型在之前的安全基准中更安全,但作为CUAs的滥用风险却更高,例如Gemini 2.5 Pro比Gemini 1.5 Pro更具风险。 此外,尽管这些语言模型在作为聊天机器人时对常见的恶意提示(例如,制造炸弹)具有鲁棒性,但它们作为CUAs时仍可能表现出不安全行为。 我们进一步评估了一个领先的代理框架(UI-TARS-1.5),发现虽然它提高了性能,但也放大了滥用风险。 为了缓解CUAs的滥用风险,我们探索使用语言模型来监控CUAs的行为。 我们发现,监控不安全的计算机使用行为比监控传统的不安全聊天机器人回复要困难得多。 虽然监控思维链能带来适度的提升,但平均监控准确率仅为77%。 一种分层摘要策略最多能提高性能13%,这是一个有前景的方向,尽管监控仍然不可靠。 该基准将公开发布,以促进进一步研究以缓解这些风险。
- [31] arXiv:2509.10573 (replaced) [cn-pdf, pdf, html, other]
-
Title: Directionality of the Voynich ScriptTitle: 维奇尔文的方向性Subjects: Cryptography and Security (cs.CR)
While the Voynich Manuscript was almost certainly written left-to-right (LTR), the question whether the underlying script or cipher reads LTR or right-to-left (RTL) has received little quantitative attention. We introduce a statistical method that leverages n-gram perplexity asymmetry to determine directional bias in character sequences.
虽然Voynich手稿肯定是从左到右书写的(LTR),但关于其底层的脚本或密码是否是从左到右(LTR)还是从右到左(RTL)的问题,很少有定量研究。我们引入了一种统计方法,利用n-gram困惑度不对称性来确定字符序列的方向偏差。
- [32] arXiv:2509.15754 (replaced) [cn-pdf, pdf, other]
-
Title: Hornet Node and the Hornet DSL: A Minimal, Executable Specification for Bitcoin ConsensusTitle: 黄蜂节点和黄蜂DSL:比特币共识的最小可执行规范Subjects: Cryptography and Security (cs.CR) ; Programming Languages (cs.PL) ; Software Engineering (cs.SE)
Bitcoin's consensus rules are encoded in the implementation of its reference client: "The code is the spec." Yet this code is unsuitable for formal verification due to side effects, mutable state, concurrency, and legacy design. A standalone formal specification would enable verification both across versions of the reference client and against new client implementations, strengthening decentralization by reducing the risk of consensus-splitting bugs. Yet such a specification has long been considered intractable given the complexity of Bitcoin's consensus logic. We demonstrate a compact, executable, declarative C++ specification of Bitcoin consensus rules that syncs mainnet to tip in a few hours on a single thread. We also introduce the Hornet Domain-Specific Language (DSL) specifically designed to encode these rules unambiguously for execution, enabling formal reasoning, consensus code generation, and AI-driven adversarial testing. Our spec-driven client Hornet Node offers a modern and modular complement to the reference client. Its clear, idiomatic style makes it suitable for education, while its performance makes it ideal for experimentation. We highlight architectural contributions such as its layered design, efficient data structures, and strong separation of concerns, supported by production-quality code examples. We argue that Hornet Node and Hornet DSL together provide the first credible path toward a pure, formal, executable specification of Bitcoin consensus.
比特币的共识规则在其参考客户端的实现中编码:“代码即规范。” 然而由于副作用、可变状态、并发性和遗留设计,这段代码不适合形式化验证。 一个独立的形式化规范将能够跨参考客户端的不同版本以及针对新的客户端实现进行验证,通过减少共识分裂错误的风险来加强去中心化。 然而,鉴于比特币共识逻辑的复杂性,这种规范长期以来被认为难以实现。 我们展示了一个紧凑、可执行、声明式的C++比特币共识规则规范,可以在单线程上几小时内同步主网到最新区块。 我们还引入了Hornet领域特定语言(DSL),专门设计用于无歧义地编码这些规则以供执行,从而实现形式化推理、共识代码生成和AI驱动的对抗性测试。 我们的以规范为中心的客户端Hornet节点为参考客户端提供了一个现代且模块化的补充。 其清晰、符合习惯的风格使其适合教育,而其性能使其非常适合实验。 我们强调了架构上的贡献,如分层设计、高效的数据结构以及强烈的关注点分离,并通过生产质量的代码示例加以支持。 我们认为Hornet节点和Hornet DSL共同提供了通往比特币共识纯形式化、可执行规范的第一条可信路径。
- [33] arXiv:2210.06140 (replaced) [cn-pdf, pdf, html, other]
-
Title: Differentially Private Bootstrap: New Privacy Analysis and Inference StrategiesTitle: 差分隐私引导的自助法:新的隐私分析和推断策略Comments: 22 pages before appendices and references. 50 pages totalSubjects: Machine Learning (stat.ML) ; Cryptography and Security (cs.CR) ; Data Structures and Algorithms (cs.DS) ; Machine Learning (cs.LG)
Differentially private (DP) mechanisms protect individual-level information by introducing randomness into the statistical analysis procedure. Despite the availability of numerous DP tools, there remains a lack of general techniques for conducting statistical inference under DP. We examine a DP bootstrap procedure that releases multiple private bootstrap estimates to infer the sampling distribution and construct confidence intervals (CIs). Our privacy analysis presents new results on the privacy cost of a single DP bootstrap estimate, applicable to any DP mechanism, and identifies some misapplications of the bootstrap in the existing literature. For the composition of the DP bootstrap, we present a numerical method to compute the exact privacy cost of releasing multiple DP bootstrap estimates, and using the Gaussian-DP (GDP) framework (Dong et al., 2022), we show that the release of $B$ DP bootstrap estimates from mechanisms satisfying $(\mu/\sqrt{(2-2/\mathrm{e})B})$-GDP asymptotically satisfies $\mu$-GDP as $B$ goes to infinity. Then, we perform private statistical inference by post-processing the DP bootstrap estimates. We prove that our point estimates are consistent, our standard CIs are asymptotically valid, and both enjoy optimal convergence rates. To further improve the finite performance, we use deconvolution with DP bootstrap estimates to accurately infer the sampling distribution. We derive CIs for tasks such as population mean estimation, logistic regression, and quantile regression, and we compare them to existing methods using simulations and real-world experiments on 2016 Canada Census data. Our private CIs achieve the nominal coverage level and offer the first approach to private inference for quantile regression.
差分隐私(DP)机制通过在统计分析过程中引入随机性来保护个体层面的信息。 尽管有众多的DP工具可用,但在DP下进行统计推断仍缺乏通用技术。 我们研究了一种DP自助法程序,该程序释放多个私有自助估计值以推断抽样分布并构建置信区间(CIs)。 我们的隐私分析提出了关于单个DP自助估计隐私成本的新结果,适用于任何DP机制,并指出了现有文献中自助法的一些误用情况。 对于DP自助法的组合,我们提出了一种数值方法来计算释放多个DP自助估计的精确隐私成本,并使用高斯-DP(GDP)框架(Dong等,2022),我们证明了从满足$(\mu/\sqrt{(2-2/\mathrm{e})B})$-GDP的机制中释放$B$个DP自助估计值,在$B$趋于无穷大时,渐近地满足$\mu$-GDP。 然后,我们通过对DP自助估计进行后处理来进行私有统计推断。 我们证明了我们的点估计是一致的,我们的标准CIs渐近有效,且两者都具有最优收敛速度。 为了进一步提高有限样本性能,我们使用带有DP自助估计的去卷积来准确推断抽样分布。 我们为总体均值估计、逻辑回归和分位数回归等任务推导了CIs,并使用2016年加拿大人口普查数据的模拟和真实实验与现有方法进行了比较。 我们的私有CIs达到了名义覆盖率水平,并为分位数回归提供了第一个私有推断方法。
- [34] arXiv:2409.18708 (replaced) [cn-pdf, pdf, html, other]
-
Title: Evading Toxicity Detection with ASCII-art: A Benchmark of Spatial Attacks on Moderation SystemsTitle: 用ASCII艺术逃避毒性检测:对内容审核系统的空间攻击基准Journal-ref: https://aclanthology.org/2025.woah-1.13/Subjects: Computation and Language (cs.CL) ; Artificial Intelligence (cs.AI) ; Cryptography and Security (cs.CR)
We introduce a novel class of adversarial attacks on toxicity detection models that exploit language models' failure to interpret spatially structured text in the form of ASCII art. To evaluate the effectiveness of these attacks, we propose ToxASCII, a benchmark designed to assess the robustness of toxicity detection systems against visually obfuscated inputs. Our attacks achieve a perfect Attack Success Rate (ASR) across a diverse set of state-of-the-art large language models and dedicated moderation tools, revealing a significant vulnerability in current text-only moderation systems.
我们引入了一类新型的对抗攻击,针对毒性检测模型,这些攻击利用语言模型在解释ASCII艺术形式的空间结构文本方面的失败。 为了评估这些攻击的有效性,我们提出了ToxASCII,一个设计用于评估毒性检测系统对视觉混淆输入的鲁棒性的基准。 我们的攻击在一系列最先进的大型语言模型和专门的审核工具中实现了完美的攻击成功率(ASR),揭示了当前仅基于文本的审核系统中的重大漏洞。
- [35] arXiv:2410.21824 (replaced) [cn-pdf, pdf, html, other]
-
Title: Secure numerical simulations using fully homomorphic encryptionTitle: 使用全同态加密的安全数值模拟Comments: accepted manuscriptJournal-ref: Comput. Phys. Commun. 318 (2026) 109868Subjects: Numerical Analysis (math.NA) ; Cryptography and Security (cs.CR) ; Computational Physics (physics.comp-ph)
Data privacy is a significant concern when using numerical simulations for sensitive information such as medical, financial, or engineering data -- especially in untrusted environments like public cloud infrastructures. Fully homomorphic encryption (FHE) offers a promising solution for achieving data privacy by enabling secure computations directly on encrypted data. Aimed at computational scientists, this work explores the viability of FHE-based, privacy-preserving numerical simulations of partial differential equations. The presented approach utilizes the Cheon-Kim-Kim-Song (CKKS) scheme, a widely used FHE method for approximate arithmetic on real numbers. Two Julia packages are introduced, OpenFHE$.$jl and SecureArithmetic$.$jl, which wrap the OpenFHE C++ library to provide a convenient interface for secure arithmetic operations. With these tools, the accuracy and performance of key FHE operations in OpenFHE are evaluated, and implementations of finite difference schemes for solving the linear advection equation with encrypted data are demonstrated. The results show that cryptographically secure numerical simulations are possible, but that careful consideration must be given to the computational overhead and the numerical errors introduced by using FHE. An analysis of the algorithmic restrictions imposed by FHE highlights potential challenges and solutions for extending the approach to other models and methods. While it remains uncertain how broadly the approach can be generalized to more complex algorithms due to CKKS limitations, these findings lay the groundwork for further research on privacy-preserving scientific computing.
数据隐私在使用数值模拟处理敏感信息(如医疗、金融或工程数据)时是一个重要的关注点——尤其是在不受信任的环境中,如公共云基础设施。全同态加密(FHE)通过允许在加密数据上直接进行安全计算,为实现数据隐私提供了一个有前景的解决方案。针对计算科学家,这项工作探讨了基于FHE的、保护隐私的偏微分方程数值模拟的可行性。所提出的方法利用了Cheon-Kim-Kim-Song(CKKS)方案,这是一种广泛用于实数近似运算的FHE方法。介绍了两个Julia包,OpenFHE$.$jl和SecureArithmetic$.$jl,它们封装了OpenFHE C++库,以提供安全算术运算的便捷接口。借助这些工具,评估了OpenFHE中关键FHE操作的精度和性能,并展示了使用加密数据求解线性对流方程的有限差分格式的实现。结果表明,密码学安全的数值模拟是可行的,但必须仔细考虑由使用FHE带来的计算开销和数值误差。对FHE施加的算法限制的分析突出了将该方法扩展到其他模型和方法的潜在挑战和解决方案。尽管由于CKKS的限制,这种方法在更复杂算法中的推广程度尚不确定,但这些发现为隐私保护科学计算的进一步研究奠定了基础。
- [36] arXiv:2502.09584 (replaced) [cn-pdf, pdf, html, other]
-
Title: Differentially Private Compression and the Sensitivity of LZ77Title: 差分私有压缩与LZ77的敏感性Comments: 38 pages, 5 figures; Full version of the paper to appear at the Theory of Cryptography Conference (TCC) 2025Subjects: Computational Complexity (cs.CC) ; Cryptography and Security (cs.CR)
We initiate the study of differentially private data-compression schemes motivated by the insecurity of the popular "Compress-Then-Encrypt" framework. Data compression is a useful tool which exploits redundancy in data to reduce storage/bandwidth when files are stored or transmitted. However, if the contents of a file are confidential then the length of a compressed file might leak confidential information about the content of the file itself. Encrypting a compressed file does not eliminate this leakage as data encryption schemes are only designed to hide the content of confidential message instead of the length of the message. In our proposed Differentially Private Compress-Then-Encrypt framework, we add a random positive amount of padding to the compressed file to ensure that any leakage satisfies the rigorous privacy guarantee of $(\epsilon,\delta)$-differential privacy. The amount of padding that needs to be added depends on the sensitivity of the compression scheme to small changes in the input, i.e., to what degree can changing a single character of the input message impact the length of the compressed file. While some popular compression schemes are highly sensitive to small changes in the input, we argue that effective data compression schemes do not necessarily have high sensitivity. Our primary technical contribution is analyzing the fine-grained sensitivity of the LZ77 compression scheme (IEEE Trans. Inf. Theory 1977) which is one of the most common compression schemes used in practice. We show that the global sensitivity of the LZ77 compression scheme has the upper bound $O(W^{2/3}\log n)$ where $W\leq n$ denotes the size of the sliding window. When $W=n$, we show the lower bound $\Omega(n^{2/3}\log^{1/3}n)$ for the global sensitivity of the LZ77 compression scheme which is tight up to a sublogarithmic factor.
我们启动了对差分隐私数据压缩方案的研究,这是受到流行的“先压缩后加密”框架不安全性的启发。 数据压缩是一种有用的工具,它利用数据中的冗余来减少文件存储或传输时的存储/带宽。 然而,如果文件内容是机密的,那么压缩文件的长度可能会泄露关于文件内容的机密信息。 对压缩文件进行加密并不能消除这种泄露,因为数据加密方案仅设计用于隐藏机密消息的内容,而不是消息的长度。 在我们提出的差分隐私的“先压缩后加密”框架中,我们在压缩文件中添加一个随机的正数大小的填充,以确保任何泄露都满足$(\epsilon,\delta)$-差分隐私的严格隐私保证。 需要添加的填充量取决于压缩方案对输入小变化的敏感度,即输入消息中的单个字符发生变化会对压缩文件长度产生多大的影响。 虽然一些流行的压缩方案对输入的小变化非常敏感,但我们认为有效的数据压缩方案不一定具有高敏感度。 我们的主要技术贡献是对 LZ77 压缩方案(IEEE Trans. Inf. Theory 1977)的细粒度敏感度进行了分析,这是实践中最常用的压缩方案之一。 我们证明了 LZ77 压缩方案的全局敏感度有一个上界$O(W^{2/3}\log n)$,其中$W\leq n$表示滑动窗口的大小。 当$W=n$时,我们证明了 LZ77 压缩方案的全局敏感度的下界$\Omega(n^{2/3}\log^{1/3}n)$,这个下界在次对数因子范围内是紧的。
- [37] arXiv:2505.15140 (replaced) [cn-pdf, pdf, html, other]
-
Title: EC-LDA : Label Distribution Inference Attack against Federated Graph Learning with Embedding CompressionTitle: EC-LDA:一种针对嵌入压缩的联邦图学习的标签分布推断攻击Comments: This paper has been accepted by 2025 IEEE International Conference on Data Mining (ICDM 2025)Journal-ref: ICDM 2025Subjects: Machine Learning (cs.LG) ; Cryptography and Security (cs.CR)
Graph Neural Networks (GNNs) have been widely used for graph analysis. Federated Graph Learning (FGL) is an emerging learning framework to collaboratively train graph data from various clients. Although FGL allows client data to remain localized, a malicious server can still steal client private data information through uploaded gradient. In this paper, we for the first time propose label distribution attacks (LDAs) on FGL that aim to infer the label distributions of the client-side data. Firstly, we observe that the effectiveness of LDA is closely related to the variance of node embeddings in GNNs. Next, we analyze the relation between them and propose a new attack named EC-LDA, which significantly improves the attack effectiveness by compressing node embeddings. Then, extensive experiments on node classification and link prediction tasks across six widely used graph datasets show that EC-LDA outperforms the SOTA LDAs. Specifically, EC-LDA can achieve the Cos-sim as high as 1.0 under almost all cases. Finally, we explore the robustness of EC-LDA under differential privacy protection and discuss the potential effective defense methods to EC-LDA. Our code is available at https://github.com/cheng-t/EC-LDA.
图神经网络(GNNs)已被广泛用于图分析。联邦图学习(FGL)是一种新兴的学习框架,用于从不同客户端的图数据中协同训练。尽管FGL允许客户端数据保持本地化,但恶意服务器仍可能通过上传的梯度窃取客户端的私有数据信息。在本文中,我们首次提出了针对FGL的标签分布攻击(LDAs),旨在推断客户端数据的标签分布。首先,我们观察到LDA的有效性与GNNs中节点嵌入的方差密切相关。接下来,我们分析了它们之间的关系,并提出了一种新的攻击方法EC-LDA,该方法通过压缩节点嵌入显著提高了攻击效果。然后,在六个广泛使用的图数据集上的节点分类和链接预测任务的大量实验表明,EC-LDA优于最先进的LDAs。具体来说,EC-LDA在几乎所有情况下都能达到高达1.0的余弦相似度。最后,我们探讨了EC-LDA在差分隐私保护下的鲁棒性,并讨论了针对EC-LDA的潜在有效防御方法。我们的代码可在https://github.com/cheng-t/EC-LDA获得。
- [38] arXiv:2506.04681 (replaced) [cn-pdf, pdf, html, other]
-
Title: Urania: Differentially Private Insights into AI UseTitle: 乌拉尼亚:关于AI使用差异隐私见解Daogao Liu, Edith Cohen, Badih Ghazi, Peter Kairouz, Pritish Kamath, Alexander Knop, Ravi Kumar, Pasin Manurangsi, Adam Sealfon, Da Yu, Chiyuan ZhangComments: To appear at COLM 2025Subjects: Machine Learning (cs.LG) ; Artificial Intelligence (cs.AI) ; Computation and Language (cs.CL) ; Cryptography and Security (cs.CR) ; Computers and Society (cs.CY)
We introduce $Urania$, a novel framework for generating insights about LLM chatbot interactions with rigorous differential privacy (DP) guarantees. The framework employs a private clustering mechanism and innovative keyword extraction methods, including frequency-based, TF-IDF-based, and LLM-guided approaches. By leveraging DP tools such as clustering, partition selection, and histogram-based summarization, $Urania$ provides end-to-end privacy protection. Our evaluation assesses lexical and semantic content preservation, pair similarity, and LLM-based metrics, benchmarking against a non-private Clio-inspired pipeline (Tamkin et al., 2024). Moreover, we develop a simple empirical privacy evaluation that demonstrates the enhanced robustness of our DP pipeline. The results show the framework's ability to extract meaningful conversational insights while maintaining stringent user privacy, effectively balancing data utility with privacy preservation.
我们引入了$Urania$,一种用于生成关于 LLM 聊天机器人交互见解的新框架,并提供严格的差分隐私 (DP) 保证。 该框架采用私有聚类机制和创新的关键词提取方法,包括基于频率、基于 TF-IDF 和 LLM 引导的方法。 通过利用差分隐私工具,如聚类、分区选择和基于直方图的总结,$Urania$提供端到端的隐私保护。 我们的评估评估了词汇和语义内容保留情况、对相似性以及基于 LLM 的指标,并与一个非私有的 Clio 启发式流程(Tamkin 等,2024)进行基准比较。 此外,我们开发了一个简单的经验隐私评估,证明了我们的 DP 流程的增强鲁棒性。 结果表明,该框架能够在保持严格用户隐私的同时提取有意义的对话见解,有效地平衡数据效用与隐私保护。
- [39] arXiv:2508.18811 (replaced) [cn-pdf, pdf, html, other]
-
Title: Quantum computing on encrypted data with arbitrary rotation gatesTitle: 使用任意旋转门对加密数据进行量子计算Subjects: Quantum Physics (quant-ph) ; Cryptography and Security (cs.CR)
An efficient technique of computing on encrypted data allows a client with limited capability to perform complex operations on a remote fault-tolerant server without leaking anything about the input or output. Quantum computing provides information-theoretic security to solve such a problem, and many such techniques have been proposed under the premises of half-blind quantum computation. However, they are dependent on a fixed non-parametric resource set that comprises some universal combination of $H,S,T,CX, CZ$ or $CCX$ gates. In this study, we show that recursive decryption of the parametric gate, $R_z(\theta)$, is possible exactly when $\theta=\pm\pi/2^m$ for $m\in \mathbb{Z^{+}}$, and approximately with arbitrary precision $\epsilon$ for given $\theta$. We also show that a blind algorithm based on such a technique needs at most $O(\log_2^2(\pi/\epsilon))$ computation steps and communication rounds, while the techniques based on a non-parametric resource set require $O(\ln^{3.97}(1/\epsilon))$ rounds. We use these results to propose a universal scheme of half-blind quantum computation for computing on encrypted data using arbitrary rotation gates. This substantial reduction in the depth of blind circuit is an affirmative step towards the practical application of such techniques in secure NISQ-era computing.
一种高效的在加密数据上进行计算的技术,使能力有限的客户端能够在不泄露任何关于输入或输出的信息的情况下,在远程容错服务器上执行复杂操作。 量子计算提供了信息理论安全来解决此类问题,并且在半盲量子计算的前提条件下,已经提出了许多这样的技术。 然而,它们依赖于一个固定的非参数资源集,该集合包括一些通用的$H,S,T,CX, CZ$或$CCX$门的组合。 在本研究中,我们表明,参数门$R_z(\theta)$的递归解密在$\theta=\pm\pi/2^m$对$m\in \mathbb{Z^{+}}$时是精确可行的,并且对于给定的$\theta$,可以以任意精度近似实现$\epsilon$。 我们还表明,基于这种技术的盲算法最多需要$O(\log_2^2(\pi/\epsilon))$个计算步骤和通信轮次,而非参数化资源集的技术则需要$O(\ln^{3.97}(1/\epsilon))$轮。 我们利用这些结果提出一种通用的半盲量子计算方案,用于使用任意旋转门对加密数据进行计算。 盲电路深度的显著减少是朝着这类技术在安全NISQ时代计算中的实际应用迈出的积极一步。