Physics and Society
See recent articles
Showing new listings for Thursday, 25 September 2025
- [1] arXiv:2509.19815 [cn-pdf, pdf, other]
-
Title: Current and Future Directions for Responsible Quantum Technologies: A ResQT Community PerspectiveTitle: 负责任的量子技术的现状与未来方向:ResQT社区的视角Adrian Schmidt, Alexandre Artaud, Arsev Umur Aydinoglu, Astrid Bötticher, Rodrigo Araiza Bravo, Marilu Chiofalo, Rebecca Coates, Ilke Ercan, Alexei Grinbaum, Emily Haworth, Carolyn Ten Holter, Eline de Jong, Bart Karstens, Matthias C. Kettemann, Anna Knörr, Clarissa Ai Ling Lee, Fabienne Marco, Wenzel Mehnert, Josephine C. Meyer, Shantanu Sharma, Pieter Vermaas, Carrie Weidner, Barbara Wellmann, Mira L. Wolf-Bauwens, Zeki C. SeskirComments: 25 pages, 3 figuresSubjects: Physics and Society (physics.soc-ph) ; Computers and Society (cs.CY)
Quantum technologies (QT) are advancing rapidly, promising advancements across a wide spectrum of applications but also raising significant ethical, societal, and geopolitical impacts, including dual-use capabilities, varying levels of access, and impending quantum divide(s). To address these, the Responsible Quantum Technologies (ResQT) community was established to share knowledge, perspectives, and best practices across various disciplines. Its mission is to ensure QT developments align with ethical principles, promote equity, and mitigate unintended consequences. Initial progress has been made, as scholars and policymakers increasingly recognize principles of responsible QT. However, more widespread dissemination is needed, and as QT matures, so must responsible QT. This paper provides a comprehensive overview of the ResQT community's current work and states necessary future directions. Drawing on historical lessons from artificial intelligence and nanotechnology, actions targeting the quantum divide(s) are addressed, including the implementation of responsible research and innovation, fostering wider stakeholder engagement, and sustainable development. These actions aim to build trust and engagement, facilitating the participatory and responsible development of QT. The ResQT community advocates that responsible QT should be an integral part of quantum development rather than an afterthought so that quantum technologies evolve toward a future that is technologically advanced and beneficial for all.
量子技术(QT)正在迅速发展,有望在广泛的应用领域取得进展,但也引发了重要的伦理、社会和地缘政治影响,包括双重用途能力、不同的获取水平以及即将到来的量子鸿沟。 为应对这些问题,负责任的量子技术(ResQT)社区成立,以在不同学科之间分享知识、观点和最佳实践。 其使命是确保量子技术的发展符合伦理原则,促进公平,并减轻意外后果。 初步进展已经取得,因为学者和政策制定者越来越认识到负责任的量子技术原则。 然而,需要更广泛的传播,随着量子技术的成熟,负责任的量子技术也必须随之发展。 本文全面概述了ResQT社区的当前工作,并指出了必要的未来方向。 借鉴人工智能和纳米技术的历史经验,针对量子鸿沟采取了行动,包括实施负责任的研究和创新,促进更广泛的利益相关者参与和可持续发展。 这些行动旨在建立信任和参与,促进量子技术的参与式和负责任的发展。 ResQT社区主张,负责任的量子技术应是量子发展的一个组成部分,而不是事后考虑的问题,从而使量子技术朝着一个技术先进且对所有人有益的未来演进。
- [2] arXiv:2509.19860 [cn-pdf, pdf, html, other]
-
Title: Diversity mitigates polarization and consensus in opinion dynamicsTitle: 多样性缓解了意见动态中的极化和共识Comments: 17 pages, 17 figuresSubjects: Physics and Society (physics.soc-ph) ; Adaptation and Self-Organizing Systems (nlin.AO)
We study the opinion dynamics in a population by considering a variant of Kuramoto model where the phase of an oscillator represents the opinion of an individual on a single topic. Two extreme phases separated by $\pi$ represent opposing views. Any other phase is considered as an intermediate opinion between the two extremes. The interaction (or attitude) between two individuals depends on the difference between their opinions and can be positive (attractive) or negative (repulsive) based on the defined thresholds. We investigate the opinion dynamics when these thresholds are varied. We observe explosive transition from a bipolarized state to a consensus state with the existence of scattered and tri-polarized states at low values of threshold parameter. The system exhibits multistability between various states in a sizeable parameter region. These transitions and multistability are studied in populations with different degrees of diversity represented by the width of conviction distribution. We found that a more homogeneous population has greater tendency to exhibit bipolarized, tri-polarized and clustered states while a diverse population helps mitigate polarization among individuals by reaching to a consensus sooner. Ott-Antonsen analysis is used to analyse the system's long term macroscopic behaviour and verify the numerical results. We also study the effects of neutral individuals that do not interact with others or do not change their attitude on opinion formation, nature of transitions and multistability. Furthermore, we apply our model to language data to study the assimilation of diverse languages in India and compare the results with those obtained from model equations.
我们通过考虑Kuramoto模型的一个变体来研究种群中的意见动态,其中振荡器的相位代表个体在单一主题上的意见。两个由$\pi$分隔的极端相位代表对立的观点。任何其他相位都被视为两种极端之间的中间意见。两个人之间的相互作用(或态度)取决于他们意见的差异,并可根据定义的阈值为积极(吸引)或消极(排斥)。我们研究当这些阈值变化时的意见动态。我们观察到,在阈值参数较低时存在散乱和三极化状态的情况下,从双极化状态到共识状态的爆炸性转变。在相当大的参数区域内,系统在各种状态之间表现出多稳定性。这些转变和多稳定性是在具有不同多样性程度的人口中研究的,这种多样性由信念分布的宽度表示。我们发现,更同质的人口更容易表现出双极化、三极化和集群状态,而多样化的人口通过更快地达成共识有助于缓解个体之间的极化。使用Ott-Antonsen分析来分析系统的长期宏观行为并验证数值结果。我们还研究了不与他人互动或不改变态度的中立个体对意见形成、转变性质和多稳定性的影响。此外,我们将我们的模型应用于语言数据,以研究印度多样语言的同化,并将结果与从模型方程获得的结果进行比较。
- [3] arXiv:2509.19867 [cn-pdf, pdf, other]
-
Title: Robustness and resilience of complex networksTitle: 复杂网络的鲁棒性和弹性Oriol Artime, Marco Grassia, Manlio De Domenico, James P. Gleeson, Hernan A. Makse, Giuseppe Mangioni, Matjaz Perc, Filippo RadicchiJournal-ref: Nature Review Physics 6(2), 114-131 (2024)Subjects: Physics and Society (physics.soc-ph) ; Statistical Mechanics (cond-mat.stat-mech)
Complex networks are ubiquitous: a cell, the human brain, a group of people and the Internet are all examples of interconnected many-body systems characterized by macroscopic properties that cannot be trivially deduced from those of their microscopic constituents. Such systems are exposed to both internal, localized, failures and external disturbances or perturbations. Owing to their interconnected structure, complex systems might be severely degraded, to the point of disintegration or systemic dysfunction. Examples include cascading failures, triggered by an initially localized overload in power systems, and the critical slowing downs of ecosystems which can be driven towards extinction. In recent years, this general phenomenon has been investigated by framing localized and systemic failures in terms of perturbations that can alter the function of a system. We capitalize on this mathematical framework to review theoretical and computational approaches to characterize robustness and resilience of complex networks. We discuss recent approaches to mitigate the impact of perturbations in terms of designing robustness, identifying early-warning signals and adapting responses. In terms of applications, we compare the performance of the state-of-the-art dismantling techniques, highlighting their optimal range of applicability for practical problems, and provide a repository with ready-to-use scripts, a much-needed tool set.
复杂网络无处不在:一个细胞、人脑、一群人和互联网都是由宏观性质表征的相互连接的多体系统,这些宏观性质不能从其微观组成部分的性质中简单推断出来。 这些系统既会受到内部的局部故障的影响,也会受到外部的干扰或扰动。 由于它们的相互连接结构,复杂系统可能会严重退化,甚至解体或出现系统性功能障碍。 例如,电力系统中由初始局部过载引发的级联故障,以及生态系统中可能被推向灭绝的临界减速现象。 近年来,这一普遍现象已被研究,通过将局部和系统性故障表述为能够改变系统功能的扰动。 我们利用这一数学框架来回顾表征复杂网络鲁棒性和弹性的理论和计算方法。 我们讨论了在设计鲁棒性、识别早期预警信号和适应响应方面减轻扰动影响的最新方法。 在应用方面,我们比较了最先进的拆解技术的性能,突出了它们在实际问题中的最佳适用范围,并提供了一个包含即用脚本的存储库,这是一个急需的工具集。
- [4] arXiv:2509.19953 [cn-pdf, pdf, other]
-
Title: 2025 Southeast Asia Eleven Nations Influence Index ReportTitle: 2025年东南亚十一国影响力指数报告Comments: The document delivers a robust reproducible index (SAII v3) that advances quantitative IR methods and offers actionable insights into Southeast Asia's stratified power structureSubjects: Physics and Society (physics.soc-ph) ; Artificial Intelligence (cs.AI)
This study constructs a fully data-driven and reproducible Southeast Asia Influence Index (SAII v3) to reduce bias from expert scoring and subjective weighting while mapping hierarchical power structures across the eleven ASEAN nations. We aggregate authoritative open-source indicators across four dimensions (economic, military, diplomatic, socio-technological) and apply a three-tiered standardization chain quantile-Box-Cox-min-max to mitigate outliers and skewness. Weights are obtained through equal-weight integration of Entropy Weighting Method (EWM), CRITIC, and PCA. Robustness is assessed via Kendall's tau, +/-20% weight perturbation, and 10,000 bootstrap iterations, with additional checks including +/-10% dimensional sensitivity and V2-V3 bump chart comparisons. Results show integrated weights: Economy 35-40%, Military 20-25%, Diplomacy about 20%, Socio-Technology about 15%. The regional landscape exhibits a one-strong, two-medium, three-stable, and multiple-weak pattern: Indonesia, Singapore, and Malaysia lead, while Thailand, the Philippines, and Vietnam form a mid-tier competitive band. V2 and V3 rankings are highly consistent (Kendall's tau = 0.818), though small mid-tier reorderings appear (Thailand and the Philippines rise, Vietnam falls), indicating that v3 is more sensitive to structural equilibrium. ASEAN-11 average sensitivity highlights military and socio-technological dimensions as having the largest marginal effects (+/-0.002). In conclusion, SAII v3 delivers algorithmic weighting and auditable reproducibility, reveals multidimensional drivers of influence in Southeast Asia, and provides actionable quantitative evidence for resource allocation and policy prioritization by regional governments and external partners.
本研究构建了一个完全数据驱动且可重复的东南亚影响力指数(SAII v3),以减少专家评分和主观加权带来的偏差,同时映射十一国东盟国家的层级权力结构。 我们在四个维度(经济、军事、外交、社会技术)上整合权威的开源指标,并应用三层标准化链量化-Box-Cox-最小最大值以减轻异常值和偏度。 权重通过熵权法(EWM)、CRITIC和PCA的等权重集成获得。 通过Kendall's tau、±20%权重扰动和10,000次自助迭代来评估稳健性,附加检查包括±10%维度敏感性和V2-V3折线图比较。 结果表明综合权重:经济35-40%,军事20-25%,外交约20%,社会技术约15%。 区域格局呈现出一强、两中、三稳、多个弱的模式:印度尼西亚、新加坡和马来西亚领先,而泰国、菲律宾和越南形成中层竞争带。 V2和V3排名高度一致(Kendall's tau = 0.818),尽管中层出现小幅重新排序(泰国和菲律宾上升,越南下降),表明v3对结构平衡更敏感。 东盟-11平均敏感性突显军事和社会技术维度具有最大的边际效应(±0.002)。 总之,SAII v3提供了算法加权和可审计的可重复性,揭示了东南亚影响力的多维驱动因素,并为地区政府和外部合作伙伴提供了用于资源分配和政策优先级的可操作定量证据。
- [5] arXiv:2509.20174 [cn-pdf, pdf, html, other]
-
Title: Efficient Gillespie algorithms for spreading phenomena in large and heterogeneous higher-order networksTitle: 大规模和异构高阶网络中传播现象的高效Gillespie算法Comments: 14 pages, 8 figures, 2 tablesSubjects: Physics and Society (physics.soc-ph) ; Computational Physics (physics.comp-ph)
Higher-order dynamics refer to mechanisms where collective mutual or synchronous interactions differ fundamentally from their pairwise counterparts through the concept of many-body interactions. Phenomena absent in pairwise models, such as catastrophic activation, hysteresis, and hybrid transitions, emerge naturally in higher-order interacting systems. Thus, the simulation of contagion dynamics on higher-order structures is algorithmically and computationally challenging due to the complexity of propagation through hyperedges of arbitrary order. To address this issue, optimized Gillespie algorithms were constructed for higher-order structures by means of phantom processes: events that do not change the state of the system but still account for time progression. We investigate the algorithm's performance considering the susceptible-infected-susceptible (SIS) epidemic model with critical mass thresholds on hypergraphs. Optimizations were assessed on networks of different sizes and levels of heterogeneity in both connectivity and order interactions, in a high epidemic prevalence regime. Algorithms with phantom processes are shown to outperform standard approaches by several orders of magnitude in the limit of large sizes. Indeed, a high computational complexity scaling $\mathcal{O}(N^2)$ with system size $N$ of the standard algorithms is improved to low complexity scaling nearly as $\mathcal{O}(N)$. The optimized methods allow for the simulation of highly heterogeneous networks with millions of nodes within affordable computation costs, significantly surpassing the size range and order heterogeneity currently considered.
高阶动力学指的是通过多体相互作用的概念,其中集体相互或同步相互作用与成对相互作用有根本不同的机制。 在成对模型中缺失的现象,如灾难性激活、滞后效应和混合相变,在高阶相互作用系统中自然出现。 因此,由于通过任意阶数的超边传播的复杂性,对高阶结构上的传染动力学进行模拟在算法和计算上具有挑战性。 为了解决这个问题,通过虚拟过程构建了针对高阶结构的优化Gillespie算法:这些事件不会改变系统的状态,但仍会考虑时间的推进。 我们研究了算法的性能,考虑了在超图上具有临界质量阈值的易感-感染-易感(SIS)流行病模型。 在高流行率的环境下,对不同大小和连接性和阶数相互作用异质性的网络进行了优化评估。 结果显示,包含虚拟过程的算法在大尺寸极限下比标准方法优越几个数量级。 确实,标准算法的计算复杂度随系统大小$N$的增长呈$\mathcal{O}(N^2)$级别,被优化方法改善为几乎$\mathcal{O}(N)$级别的低复杂度增长。 优化的方法使得在可接受的计算成本内对具有数百万节点的高度异质网络进行模拟成为可能,显著超越了当前所考虑的规模范围和阶数异质性。
- [6] arXiv:2509.20216 [cn-pdf, pdf, html, other]
-
Title: Ising dynamics on multilayer networks with heterogeneous layersTitle: 伊辛模型在具有异质层的多层网络上的动力学Comments: 19 pages, 10 figuresSubjects: Physics and Society (physics.soc-ph) ; Statistical Mechanics (cond-mat.stat-mech) ; Neurons and Cognition (q-bio.NC)
Multilayer networks provide a framework to study complex systems with multiple types of interactions, multiple dynamical processes, and/or multiple subsystems. When studying a dynamical process on a multilayer network, it is important to consider how both layer structure and heterogeneity across layers impacts the overall dynamics. As a concrete example, we study Ising dynamics on multilayer networks and investigate how network structure affects its qualitative features. We focus primarily on multiplex networks, which are multilayer networks in which interlayer edges occur only between manifestations of the same entity on different layers, although we also consider one empirical example with a more general multilayer structure. We use numerical simulations and a mean-field approximation to examine the steady-state behavior of the Ising dynamics as a function of temperature (which is a key model parameter) for a variety of two-layer multilayer networks from both models and empirical data. We examine both the steady-state behavior and a metastable state in which the two layers are anti-aligned, and we explore the effects of interlayer coupling strength and structural heterogeneity. In synthetic multilayer networks with core--periphery structure, we show that interlayer edges that involve peripheral nodes can exert more influence than interlayer edges that involve only core nodes. Finally, we consider empirical multilayer networks from biological and social systems. Our work illustrates how heterogeneity across the layers of a multilayer network influences dynamics on the whole network.
多层网络提供了一个框架来研究具有多种相互作用类型、多种动态过程和/或多个子系统的复杂系统。 在研究多层网络上的动态过程时,考虑层结构以及层间的异质性如何影响整体动态是非常重要的。 作为一个具体的例子,我们研究多层网络上的伊辛动力学,并探讨网络结构如何影响其定性特征。 我们主要关注多路复用网络,即多层网络中层间边仅发生在不同层上同一实体的表示之间,尽管我们也考虑了一个具有更一般多层结构的实际例子。 我们使用数值模拟和平均场近似来检查伊辛动力学的稳态行为,作为温度(这是一个关键模型参数)的函数,针对来自模型和实际数据的各种两层多层网络。 我们检查了稳态行为和一种两个层反向对齐的亚稳态,并探索了层间耦合强度和结构异质性的影响。 在具有核心-边缘结构的合成多层网络中,我们表明涉及边缘节点的层间边比仅涉及核心节点的层间边更能产生影响。 最后,我们考虑来自生物和社会系统的实际多层网络。 我们的工作说明了多层网络各层之间的异质性如何影响整个网络上的动态。
New submissions (showing 6 of 6 entries )
- [7] arXiv:2509.19776 (cross-list from physics.app-ph) [cn-pdf, pdf, other]
-
Title: When Energy-Efficiency May Not Yield Positive Climate Impact -- The Case of Adaptive Radiative CoolersTitle: 当能效可能不会产生积极气候影响——自适应辐射冷却器的案例Subjects: Applied Physics (physics.app-ph) ; Physics and Society (physics.soc-ph)
The climate impact of building envelopes is often quantified using their energy savings and CO2 emission reduction benefits. However, building envelopes also trap solar and thermal infrared heat, which is dissipated as a direct heating penalty into our warming planet. For static or adaptive envelopes that passively heat buildings by radiatively retaining heat, these two effects are antagonistic. Yet, their net effect remains unexplored. In this study, we compare the emission reductions benefit, and direct heating penalty of two classes of roof envelopes, traditional and adaptive radiative coolers (TRCs and ARCs). Calculations for buildings in different urban climates show that relative to TRCs like cool roofs, ARCs like smart roofs may have a net heating impact on earth well past this century. Thus, despite their relative energy savings and CO2 emissions reductions benefits, adaptive envelopes on roofs have a negative climate impact relative to traditional cooling designs. Our findings are generalizable across climates and a range of building envelopes and call for a rethinking of how sustainability is quantified for building envelopes, and of material and architectural design for buildings.
建筑围护结构的气候影响通常通过其节能和减少二氧化碳排放的效益来量化。 然而,建筑围护结构也会捕获太阳和热红外热量,这些热量作为直接加热惩罚释放到我们变暖的星球上。 对于通过辐射保留热量而被动加热建筑的静态或自适应围护结构,这两种效应是相互对立的。 然而,它们的净效应仍未被研究。 在本研究中,我们比较了两种类型的屋顶围护结构——传统和自适应辐射冷却器(TRCs 和 ARCs)的排放减少效益和直接加热惩罚。 对不同城市气候中的建筑进行计算表明,与传统的 TRCs(如冷却屋顶)相比,ARCs(如智能屋顶)可能在本世纪之后对地球产生净加热影响。 因此,尽管它们在相对节能和减少二氧化碳排放方面具有优势,但屋顶上的自适应围护结构相对于传统的冷却设计具有负面的气候影响。 我们的发现适用于各种气候和多种建筑围护结构,并要求重新考虑如何对建筑围护结构的可持续性进行量化,以及对建筑材料和建筑设计进行重新思考。
- [8] arXiv:2509.19857 (cross-list from cs.SI) [cn-pdf, pdf, html, other]
-
Title: Deterministic Frequency--Domain Inference of Network Topology and Hidden Components via Structure--Behavior ScalingTitle: 基于结构-行为缩放的网络拓扑和隐藏组件的确定性频域推断Comments: This work has been submitted to the Communications Physics for possible publicationSubjects: Social and Information Networks (cs.SI) ; Physics and Society (physics.soc-ph)
Hidden interactions and components in complex systems-ranging from covert actors in terrorist networks to unobserved brain regions and molecular regulators-often manifest only through indirect behavioral signals. Inferring the underlying network structure from such partial observations remains a fundamental challenge, particularly under nonlinear dynamics. We uncover a robust linear relationship between the spectral strength of a node's behavioral time series under evolutionary game dynamics and its structural degree, $S \propto k$, a structural-behavioral scaling that holds across network types and scales, revealing a universal correspondence between local connectivity and dynamic energy. Leveraging this insight, we develop a deterministic, frequency-domain inference framework based on the discrete Fourier transform (DFT) that reconstructs network topology directly from payoff sequences-without prior knowledge of the network or internal node strategies-by selectively perturbing node dynamics. The framework simultaneously localizes individual hidden nodes or identifies all edges connected to multiple hidden nodes, and estimates tight bounds on the number of hidden nodes. Extensive experiments on synthetic and real-world networks demonstrate that our method consistently outperforms state-of-the-art baselines in both topology reconstruction and hidden component detection. Moreover, it scales efficiently to large networks, offering robustness to stochastic fluctuations and overcoming the size limitations of existing techniques. Our work establishes a principled connection between local dynamic observables and global structural inference, enabling accurate topology recovery in complex systems with hidden elements.
隐藏的交互和组件在复杂系统中——从恐怖网络中的隐秘行动者到未观察到的大脑区域和分子调节器——通常只通过间接的行为信号显现出来。 从这种部分观测中推断出潜在的网络结构仍然是一个基本挑战,尤其是在非线性动力学下。 我们发现,在进化博弈动力学下,节点行为时间序列的谱强度与其结构度之间存在一种稳健的线性关系,$S \propto k$,这是一种跨网络类型和尺度的结构-行为标度,揭示了局部连接与动态能量之间的普遍对应关系。 利用这一见解,我们开发了一个基于离散傅里叶变换(DFT)的确定性频域推断框架,该框架直接从收益序列重建网络拓扑——无需事先了解网络或内部节点策略——通过选择性地扰动节点动力学。 该框架同时定位单个隐藏节点或识别多个隐藏节点的所有边,并估计隐藏节点数量的紧密界限。 在合成和现实世界网络上的大量实验表明,我们的方法在拓扑重建和隐藏组件检测方面始终优于最先进的基线方法。 此外,它能高效扩展到大型网络,对随机波动具有鲁棒性,并克服了现有技术的尺寸限制。 我们的工作建立了一种局部动态可观测量与全局结构推断之间的原则性联系,使得在具有隐藏元素的复杂系统中能够准确恢复拓扑结构。
Cross submissions (showing 2 of 2 entries )
- [9] arXiv:2408.15162 (replaced) [cn-pdf, pdf, other]
-
Title: The networks of ingredient combinations as culinary fingerprints of world cuisinesTitle: 作为世界菜肴烹饪指纹的原料组合网络Claudio Caprioli, Saumitra Kulkarni, Federico Battiston, Iacopo Iacopini, Andrea Santoro, Vito LatoraSubjects: Physics and Society (physics.soc-ph) ; Social and Information Networks (cs.SI)
Investigating how different ingredients are combined in popular dishes is crucial to uncover the principles behind food preferences. Here, we use data from public food repositories and network analysis to characterize and compare worldwide cuisines. Ingredients are first grouped into broader types, and each cuisine is then represented as a network in which nodes correspond to ingredient types and weighted links describe how frequently pairs of types co-occur in recipes. Cuisines differ not only in the popularity of ingredient types and range of recipe sizes, but also in the structural organization of ingredient-type combinations. By analyzing these networks, we uncover distinctive patterns of type associations that serve as culinary fingerprints. For example, European cuisines typically distribute ingredients across different types, whereas certain Asian and South American traditions emphasize one dominant type, such as vegetables or spices. The essence of these patterns is well captured by the networks' maximum spanning trees, which offer a simplified yet representative backbone for each cuisine. We demonstrate that both these full and simplified network representations enable machine learning models to identify cuisines from subsets of recipes with very high accuracy. Networks of ingredient combinations also cluster global cuisines into meaningful geo-cultural groups, reflecting shared patterns in culinary traditions. More broadly, our study offers novel insights into the structure of world cuisines, enabling data-driven approaches to their characterization, cross-cultural comparison, and potential adaptation.
研究不同原料在流行菜肴中的组合方式对于揭示食物偏好的原理至关重要。 在这里,我们使用来自公共食品存储库的数据和网络分析来描述和比较全球美食。 首先将原料分为更广泛的类型,然后将每种美食表示为一个网络,其中节点对应于原料类型,加权链接描述了不同类型在食谱中共同出现的频率。 美食不仅在原料类型的受欢迎程度和食谱大小范围上有所不同,而且在原料类型组合的结构组织上也存在差异。 通过分析这些网络,我们发现了作为烹饪指纹的独特类型关联模式。 例如,欧洲美食通常将原料分布在不同的类型中,而某些亚洲和南美传统则强调一种主导类型,如蔬菜或香料。 这些模式的本质由网络的最大生成树很好地捕捉,它们为每种美食提供了一个简化但具有代表性的骨架。 我们证明,这两种完整的和简化的网络表示都能使机器学习模型从食谱子集中非常准确地识别美食。 原料组合的网络也将全球美食聚类到有意义的地理文化群体中,反映了烹饪传统中的共享模式。 更广泛地说,我们的研究为世界美食的结构提供了新的见解,使数据驱动的方法能够对其特征进行描述、跨文化比较和潜在适应。
- [10] arXiv:2412.09178 (replaced) [cn-pdf, pdf, html, other]
-
Title: Multilayer Network Analysis of European Regional FlowsTitle: 欧洲区域流量的多层网络分析Comments: Main: 29 pages, 10 figures, 4 tables. Supplementary: 18 pages, 10 figures, 10 tablesJournal-ref: Cal\`o, E.; Facchini, A. Multilayer Network Analysis of European Regional Flows. Entropy 2025, 27, 978Subjects: Physics and Society (physics.soc-ph)
In Regional Economics, the attractiveness of regions for capital, migrants, tourists, and other kinds of flows is a relevant topic. Usually, studies in this field explore single flows, characterizing the dimensions of territorial attractiveness separately, rarely considering the interwoven effect of flows. Here, we investigate attractiveness from a multi-dimensional perspective (i.e., dealing with different flows), asking how various types of regional flows collectively shape the attractiveness dynamics of European regions. We analyze eight distinct flow types across NUTS2 regions from 2010 to 2018, employing a multilayer network approach. Notably, the multilayer approach unveils insights that would be missed in single-layer analyses. Community detection reveals complex structures that demonstrate the cohesive power of national borders and the existence of strong cross-border ties in specific regions. Our study contributes to a more nuanced understanding of regional attractiveness, with implications for targeted policy interventions in regional development and European cohesion.
在区域经济学中,地区对资本、移民、游客和其他类型流动的吸引力是一个相关主题。通常,该领域的研究探讨单一流动,分别描述领土吸引力的维度,很少考虑流动之间的交织效应。在这里,我们从多维角度(即处理不同的流动)来研究吸引力,询问各种类型的区域流动如何共同塑造欧洲地区的吸引力动态。我们分析了2010年至2018年间NUTS2地区的八种不同流动类型,采用多层网络方法。值得注意的是,多层方法揭示了单层分析中会遗漏的见解。社区检测揭示了复杂的结构,展示了国家边界的凝聚力量以及特定地区存在强大的跨境联系。我们的研究有助于更细致地理解区域吸引力,对区域发展和欧洲凝聚力的针对性政策干预具有意义。