查看 最近的 文章
在凝聚层的经典理论中,Grothendieck 六个函子形式化图景中唯一缺失的部分是对于开浸入$j$的$j_!$。为解决这一缺口,经典上 Deligne 通过将层类扩展到拟层提出了$j_!$的构造,而 Clausen-Scholze 则通过将层类扩展到固模块提供了另一种解决方案。在本工作中,我们证明了 Deligne 的构造通过一个自然函子与 Clausen-Scholze 的构造一致,该函子限制在 Mittag-Leffler 拟系统全子范畴上是满忠实的。
In the classical theory for coherent sheaves, the only missing piece in the Grothendieck six-functor formalism picture is $j_!$ for an open immersion $j$. Towards fixing this gap,classically Deligne proposed a construction of $j_!$ by extending the sheaf class to pro sheaves, while Clausen-Scholze provided another solution by extending the sheaf class to solid modules. In this work, we prove that Deligne's construction coincides with the Clausen-Scholze construction via a natural functor, whose restriction to the full subcategory of Mittag-Leffler pro-systems is fully faithful.