Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > physics.class-ph

帮助 | 高级搜索

经典物理

  • 交叉列表
  • 替换

查看 最近的 文章

显示 2025年08月01日, 星期五 新的列表

总共 4 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有

交叉提交 (展示 1 之 1 条目 )

[1] arXiv:2507.22907 (交叉列表自 physics.app-ph) [中文pdf, pdf, html, 其他]
标题: 时钟拉取实现最大效率的无线功率传输
标题: Clock Pulling Enables Maximum-Efficiency Wireless Power Transfer
Xianglin Hao, Xiaosheng Wang, ke Yin, Sheng Ren, Chaoqiang Jiang, Jianlong Zou, Tianyu Dong, Chi Kong Tse
评论: 5页,3图
主题: 应用物理 (physics.app-ph) ; 经典物理 (physics.class-ph) ; 光学 (physics.optics) ; 量子物理 (quant-ph)

非厄米无线功率传输(WPT)系统中的非线性宇称-时间(PT)对称性,虽然引起了物理和工程界的广泛关注,但由于其复杂的动力学机制,仍面临着严峻的理论和实际挑战。 在此,我们重新研究非线性非厄米系统中的多稳态,并发现即使在PT对称相中,PT对称状态也不总是稳定的。 我们发现了一种非线性时钟牵引机制,该机制可以强制打破PT对称性。 正确实施这种机制可以改变系统稳定性,特别是在稳定传统上不稳定的状态方面,该状态具有最大的传输效率用于WPT。 我们的工作为非厄米物理提供了新工具,并有望推动技术进步。

Nonlinear parity-time (PT) symmetry in non-Hermitian wireless power transfer (WPT) systems, while attracting significant attention from both physics and engineering communities, have posed formidable theoretical and practical challenges due to their complex dynamical mechanisms. Here, we revisit multistability in nonlinear non-Hermitian systems and find that the PT-symmetry state is not always stable even in PT-symmetry phase. We report a discovery on a nonlinear clock-pulling mechanism, which can forcibly break the PT symmetry. Proper implementation of this mechanism can switch the system stability, particularly in stabilizing the conventional unstable state which has the maximum transfer efficiency for WPT. Our work offers new tools for non-Hermitian physics and is expected to drive technological progress.

替换提交 (展示 3 之 3 条目 )

[2] arXiv:2507.07953 (替换) [中文pdf, pdf, 其他]
标题: 基于Bouc-Wen模型的增量碰撞定律:外力和特殊情况
标题: Incremental Collision Laws Based on the Bouc-Wen Model: External Forces and Corner Cases
Mihails Milehins, Dan B. Marghitu
评论: 12页,3图,见https://gitlab.com/user9716869/EBWCM;(v2-v4) 各种修改;arXiv管理员备注:文本与arXiv:2410.08147重复
主题: 经典物理 (physics.class-ph) ; 系统与控制 (eess.SY)

在题为《凸粘塑性体二元直接共线碰撞的Bouc-Wen模型》并发表于《计算与非线性动力学杂志》(第20卷,第6期,2025年6月)的文章中,作者研究了采用基于Bouc-Wen滞后微分模型的两个增量碰撞定律的凸粘塑性体二元直接共线碰撞的数学模型。 结果显示这些模型具有良好的解析性质,并进行了若干模型参数识别研究,证明这些模型能够准确捕捉各种碰撞现象的特性。 在本文中,上述模型通过将外部力的影响建模为属于某一函数空间的时间相关输入进行增强。 此外,模型具有良好解析性质的参数范围被扩展到之前出版物中未考虑的几个特殊情况。 最后,对之前进行的模型参数识别研究进行了扩展,并提供了一个额外的模型参数识别研究,以尝试验证增强模型表示外部力影响的能力。

In the article titled "The Bouc-Wen Model for Binary Direct Collinear Collisions of Convex Viscoplastic Bodies" and published in the Journal of Computational and Nonlinear Dynamics (Volume 20, Issue 6, June 2025), the authors studied mathematical models of binary direct collinear collisions of convex viscoplastic bodies that employed two incremental collision laws based on the Bouc-Wen differential model of hysteresis. It was shown that the models possess favorable analytical properties, and several model parameter identification studies were conducted, demonstrating that the models can accurately capture the nature of a variety of collision phenomena. In this article, the aforementioned models are augmented by modeling the effects of external forces as time-dependent inputs that belong to a certain function space. Furthermore, the range of the parameters under which the models possess favorable analytical properties is extended to several corner cases that were not considered in the prior publication. Finally, the previously conducted model parameter identification studies are extended, and an additional model parameter identification study is provided in an attempt to validate the ability of the augmented models to represent the effects of external forces.

[3] arXiv:2412.09100 (替换) [中文pdf, pdf, html, 其他]
标题: 广义Liénard系统和等时连接
标题: Generalized Liénard systems and isochronous connections
Bijan Bagchi, A. Ghose-Choudhury, Aritra Ghosh, Partha Guha
评论: v1:欢迎提出评论;v2:将发表于《国际理论物理杂志》;v3:本版本包含之前版本中缺失的致谢部分
期刊参考: 国际理论物理杂志 64, 212 (2025)
主题: 量子物理 (quant-ph) ; 数学物理 (math-ph) ; 精确可解与可积系统 (nlin.SI) ; 经典物理 (physics.class-ph)

在本文中,我们探讨了非线性Liénard方程$\ddot{x} + k x \dot{x} + \omega^2 x + (k^2/9) x^3 = 0$的经典和量子方面,其中$x=x(t)$是一个实变量,$k, \omega \in \mathbb{R}$。我们证明该方程可以从Levinson-Smith类型的方程导出,该方程的形式为$\ddot{z} + J(z) \dot{z}^2 + F(z) \dot{z} + G(z) = 0$,其中$z=z(t)$是一个实变量,$\{J(z), F(z), G(z)\}$是需要指定的适当函数。通过使用非局部变换,可以进一步将其映射到简谐振子,从而确立其等时性。利用Jacobi最后乘数进行计算表明,该系统具有双哈密顿特性,即存在两种不同类型的哈密顿量来描述该系统。对于每种哈密顿量,我们在动量表象中进行规范量子化,并探讨束缚态的可能性。虽然其中一个哈密顿量显示出等间距谱并具有无限状态塔,另一个哈密顿量则表现出分支,但可以通过某些参数选择以闭合形式精确求解。

In this paper, we explore some classical and quantum aspects of the nonlinear Li\'enard equation $\ddot{x} + k x \dot{x} + \omega^2 x + (k^2/9) x^3 = 0$, where $x=x(t)$ is a real variable and $k, \omega \in \mathbb{R}$. We demonstrate that such an equation could be derived from an equation of the Levinson-Smith kind which is of the form $\ddot{z} + J(z) \dot{z}^2 + F(z) \dot{z} + G(z) = 0$, where $z=z(t)$ is a real variable and $\{J(z), F(z), G(z)\}$ are suitable functions to be specified. It can further be mapped to the harmonic oscillator by making use of a nonlocal transformation, establishing its isochronicity. Computations employing the Jacobi last multiplier reveal that the system exhibits a bi-Hamiltonian character, i.e., there are two distinct types of Hamiltonians describing the system. For each of these, we perform a canonical quantization in the momentum representation and explore the possibility of bound states. While one of the Hamiltonians is seen to exhibit an equispaced spectrum with an infinite tower of states, the other one exhibits branching but can be solved exactly in closed form for certain choices of the parameters.

[4] arXiv:2501.08424 (替换) [中文pdf, pdf, html, 其他]
标题: 具有奇异位置依赖质量的等时振子及其量子化
标题: Isochronous oscillator with a singular position-dependent mass and its quantization
Aritra Ghosh, Bhabani Prasad Mandal, Bijan Bagchi
评论: v1:欢迎提出评论;v2:将发表在JMP上
主题: 量子物理 (quant-ph) ; 数学物理 (math-ph) ; 精确可解与可积系统 (nlin.SI) ; 经典物理 (physics.class-ph)

在本文中,我们对方程$\ddot{x} - (1/2x) \dot{x}^2 + 2 \omega^2 x - 1/8x = 0$进行分析,其中$\omega > 0$和$x = x(t)$是一个实值变量。我们首先讨论该方程从一种与位置有关的质量情形中出现的情况,在这种情况下,质量分布与$x$成反比,在$x = 0$处允许存在奇点。 相关的势能也在$x = 0$处是奇异的,将实轴分成两部分,即$x > 0$和$x < 0$。 对于两个分支的动力学都是精确可解的,因此为了明确起见,我们专注于$x > 0$分支。 在位置表象中进行规范量子化,并采用 von Roos 提出的动能算符的排序策略,我们证明该问题与等频振子是等谱的。 因此,量子谱由无限多个等间距的能级组成。 能级之间的间距被发现对用于按 von Roos 方式对动能算符进行排序的模糊参数的具体选择不敏感。

In this paper, we present an analysis of the equation $\ddot{x} - (1/2x) \dot{x}^2 + 2 \omega^2 x - 1/8x = 0$, where $\omega > 0$ and $x = x(t)$ is a real-valued variable. We first discuss the appearance of this equation from a position-dependent-mass scenario in which the mass profile goes inversely with $x$, admitting a singularity at $x = 0$. The associated potential is also singular at $x = 0$, splitting the real axis into two halves, i.e., $x > 0$ and $x < 0$. The dynamics is exactly solvable for both the branches and so for definiteness, we stick to the $x > 0$ branch. Performing a canonical quantization in the position representation and upon employing the ordering strategy of the kinetic-energy operator due to von Roos, we show that the problem is isospectral to the isotonic oscillator. Thus, the quantum spectrum consists of an infinite number of equispaced levels. The spacing between the energy levels is found to be insensitive to the specific choices of the ambiguity parameters that are employed for ordering the kinetic-energy operator \`a la von Roos.

总共 4 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号