查看 最近的 文章
这项工作研究了由时间依赖的Jaynes-Cummings (JC)相互作用建模的广义量子光-物质系统的分数时间描述。 通过考虑薛定谔方程中虚数单位幂的两种方法,包含了不同的分数效应。 此外,我们考虑了耦合的各种时间调制(常数、线性、指数和正弦),并分析了它们对态填充反转和纠缠的影响。 分数阶的假设导致所考虑量的不同后果,例如在固定值周围振幅逐渐减小的振荡或衰减到渐近值。 时间依赖的耦合影响这些效应的发生方式,最终导致高或低程度的纠缠。 值得注意的是,在正弦耦合下,我们发现无论虚数单位的处理方式如何,非周期性行为都被保留;然而,随着分数阶的降低,非周期性动力学可能会被抑制。
This work investigates the fractional time description of a generalized quantum light-matter system modeled by a time-dependent Jaynes-Cummings (JC) interaction. Distinct fractional effects are included by considering two approaches for the power in the imaginary unit of the Schr\"odinger equation. Additionally, we consider various time modulations in the coupling (constant, linear, exponential, and sinusoidal) and analyze their consequences on population inversion and entanglement. The assumption of fractional order leads to distinct consequences in the considered quantities, such as oscillations with decreasing amplitude around a fixed value or decay to an asymptotic value. The time-dependent couplings influence how these effects occur, eventually resulting in high or low degrees of entanglement. Notably, with sinusoidal coupling, we find that non-periodic behavior is preserved under both treatments of the imaginary unit; however, with decreasing fractional order, the non-periodic dynamics can be suppressed.
我们提出对在大型强子对撞机(LHC)上最近观察到的顶夸克-反顶夸克产生阈值增强现象,即顶onium的统一理论研究。 首先,我们将有限的非定域量子场论扩展,推导出包含指数调节函数的重夸克-反夸克束缚态的修正Bethe-Salpeter方程,这些函数使所有环状振幅在紫外区域有限。 我们表明,非定域传播子会在共振质量与宽度上引起特征性偏移,这些可以与LHC数据直接对比。 其次,我们分析了接近顶夸克对阈值处强耦合的重整化群流,引入了一种受统一场论构造启发的全纯变形。 我们发现修正的$\beta$-函数在\(\alpha_s\)附近软化了\(2m_t\)的运行,从而对阈值截面产生了微妙的增强。 第三,我们系统地比较了charmonium、bottomonium和toponium,量化了结合能、寿命和产生特征方面的差异。 特别是,顶夸克的较大宽度阻止了长寿命束缚态的形成,因此toponium仅作为瞬时阈值共振出现。 综上所述,我们的结果表明,toponium不仅探测了QCD的非定域紫外完成,还提供了一个新的窗口来观察全纯重整化群动力学以及重夸克onium的更广泛现象学。
We propose a unified theoretical study of the recently observed threshold enhancement in top-antitop production at the LHC known as toponium. First, we extend the finite, nonlocal quantum field theories to derive a modified Bethe-Salpeter equation for heavy quark-antiquark bound states, incorporating exp wential regulator functions that render all loop amplitudes ultraviolet finite. We show that nonlocal propagators induce characteristic shifts in the resonance mass and width, which can be contrasted directly with LHC data. Second, we analyse the renormalization group flow of the strong coupling near the top-pair threshold, introducing a holomorphic deformation inspired by unified field-theoretic constructions. We find that the modified $\beta$-function softens the running of \(\alpha_s\) around \(2m_t\), giving a subtle enhancement of the threshold cross-section. Third, we present a systematic comparison of charmonium, bottomonium, and toponium, quantifying differences in binding energies, lifetimes, and production signatures. In particular, the top quark's large width precludes long-lived bound states, so that toponium appears only as a transient threshold resonance. Taken together, our results demonstrate that toponium not only probes nonlocal UV completions of QCD but also offers a novel window onto holomorphic renormalization group dynamics and the broader phenomenology of heavy quarkonium.
我们报告了关于带电粒子在外部电场和磁场中的运动计算。 对于具有非零牵引力和摩擦系数的斜面上运动的粒子的度规也进行了评估,适用于弱场情况。 我们以Finsler几何的形式得到了几何解。 我们证明了我们的解度规属于({\alpha }, \b{eta})-度规类,无论是否存在斜面运动的情况。 此外,外部磁场在度规中表现为一个额外的参数。 在磁场影响下的测地线喷射系数也已计算。 最后,我们估计了滑腻平面和圆锥体的指标和测地线。
We report calculations about the motion of a charged particle in an external electric and magnetic field. The metric for the particle moving on a slope with non-zero traction and coefficient of friction is also evaluated for weak fields. We have geometric solutions in terms of Finsler geometry. We show that our solution metrics belong to the ({\alpha}, \b{eta})-metric class for cases with and without motion on a slope. Further, the external magnetic field is manifested in an additional parameter in the metric. The geodesic spray coefficients under the influence of magnetic field have also been calculated. Finally, we have estimated the indicatrices and geodesics for slippery plane and cone.