Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cond-mat > arXiv:2412.18025

帮助 | 高级搜索

凝聚态物理 > 强关联电子

arXiv:2412.18025 (cond-mat)
[提交于 2024年12月23日 (v1) ,最后修订 2025年7月18日 (此版本, v3)]

标题: 共线反铁磁体及其朗道理论

标题: Collinear Altermagnets and their Landau Theories

Authors:Hana Schiff, Paul McClarty, Jeffrey G. Rau, Judit Romhanyi
摘要: 反铁磁体在零自旋轨道耦合(SOC)极限下表现出自发的自旋分裂电子能带,这是由于存在共线补偿磁序所致。 反铁磁体独特的磁晶对称性确保了这些自旋分裂在晶体动量空间中具有特征各向异性。 由于它们在自旋电子学中的应用潜力,这些系统引起了广泛关注。 在本文中,我们提供了一个通用的朗道理论,涵盖了所有三维反铁磁体,其中磁序不会扩大晶胞。 我们确定了所有允许反铁磁性的晶体结构,然后将其简化为相对较少的一组不同的朗道理论,用于描述此类系统。 在零SOC极限下,我们确定了与能带结构自旋分裂相关的可能局部多极序。 我们明确地阐明了在零SOC下定义的反铁磁性(“理想”反铁磁体)与弱SOC效应之间的联系。 特别是,我们研究了当SOC存在时由对称性允许的哪些响应函数是由无自旋轨道耦合理论保证的,并阐述了反铁磁体与传统共线反铁磁体相比的独特性质。 最后,我们通过考虑一些反铁磁候选材料来说明这些概念的应用。
摘要: Altermagnets exhibit spontaneously spin-split electronic bands in the zero spin-orbit coupling (SOC) limit arising from the presence of collinear compensated magnetic order. The distinctive magneto-crystalline symmetries of altermagnets ensure that these spin splittings have a characteristic anisotropy in crystal momentum space. These systems have attracted a great deal of interest due to their potential for applications in spintronics. In this paper, we provide a general Landau theory that encompasses all three-dimensional altermagnets where the magnetic order does not enlarge the unit cell. We identify all crystal structures that admit altermagnetism and then reduce these to a relatively small set of distinct possible Landau theories governing such systems. In the zero SOC limit, we determine the possible local multipolar orders that are tied to the spin splitting of the band structure. We make precise the connection between altermagnetism as defined at zero SOC ("ideal" altermagnets) and the effects of weak SOC. In particular, we examine which response functions allowed by symmetry when SOC is present are guaranteed by the spin-orbit free theory, and spell out the distinctive properties of altermagnets in comparison with conventional collinear antiferromagnets. Finally, we show how these ideas can be applied by considering a number of altermagnetic candidate materials.
评论: 33页(不含参考文献),6张图。v2版本更新内容:关于排除铁磁体的评论/澄清(第4页),方程5(第8页),轨道对称性破缺和原子反铁磁性(第3页),我们技术的优势(第12页),新增引用(第4页、第12页),参考文献中的标题,更新的参考文献。修正了排版错误(第9页、第17页、第24页)。v3:修正参考文献错误(第15页)
主题: 强关联电子 (cond-mat.str-el)
引用方式: arXiv:2412.18025 [cond-mat.str-el]
  (或者 arXiv:2412.18025v3 [cond-mat.str-el] 对于此版本)
  https://doi.org/10.48550/arXiv.2412.18025
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Hana Schiff [查看电子邮件]
[v1] 星期一, 2024 年 12 月 23 日 22:38:47 UTC (8,684 KB)
[v2] 星期六, 2025 年 5 月 24 日 21:14:32 UTC (9,663 KB)
[v3] 星期五, 2025 年 7 月 18 日 17:32:49 UTC (8,710 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
cond-mat
< 上一篇   |   下一篇 >
新的 | 最近的 | 2024-12
切换浏览方式为:
cond-mat.str-el

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号