Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cond-mat > arXiv:2508.21508

帮助 | 高级搜索

凝聚态物理 > 材料科学

arXiv:2508.21508 (cond-mat)
[提交于 2025年8月29日 ]

标题: 通过霍尔效应探索LaCrGe3中两种铁磁态和方向极性的特征

标题: Exploring the signature of two ferromagnetic states and goniopolarity in LaCrGe3 through Hall effect

Authors:Modhumita Sariket, Najrul Islam, Saquib Shamim, Nitesh Kumar
摘要: LaCrGe3已成为理解铁磁(FM)材料中量子临界现象的平台。 由于其独特的两个铁磁相,它也引起了关注。 在这里,我们利用霍尔效应证明了这些相的存在。 在固定磁场下进行连续温度依赖的霍尔电阻率测量清楚地表明,无论施加的磁场方向如何,这些相都存在。 在两个相之间的边界处,剩余霍尔电阻率和霍尔系数分别达到最大值和最小值。 当磁场沿磁易轴方向施加时,在2 K时观察到显著大的反常霍尔电导率1160 ohm-1cm-1,这主要由内在效应主导,至少在低温FM相中是这样。 在顺磁(PM)相中,六方LaCrGe3在不同的晶体学方向上表现出相反的载流子极性,这是由于各向异性费米面几何结构引起的,这种现象称为“方位极性”。 方位极性输运和非常规磁相的共存可能使该材料成为未来电子器件的有前途的候选材料。
摘要: LaCrGe3 has become a playground to understand quantum critical phenomena in ferromagnetic (FM) materials. It has also garnered attention due to its peculiar two FM phases. Here, we demonstrate the presence of these phases using the Hall effect. Continuous temperature-dependent Hall resistivity measurements at fixed magnetic fields clearly demonstrate the presence of these phases, regardless of the direction of the applied magnetic field. The remanent Hall resistivity and Hall coefficient undergo a maximum and a minimum, respectively, at the boundary between the two phases. We observe significantly large anomalous Hall conductivity of 1160 ohm-1cm-1 at 2 K when the magnetic field is applied along the magnetic easy axis, which is dominated by intrinsic effects, at least in the low-temperature FM phase. In the paramagnetic (PM) phase, hexagonal LaCrGe3 exhibits opposite charge carrier polarities along different crystallographic directions, attributed to the anisotropic Fermi surface geometry, a phenomenon known as "goniopolarity". The coexistence of goniopolar transport and unconventional magnetic phases may lead this material as a promising candidate for future electronic devices.
评论: 8页,5图
主题: 材料科学 (cond-mat.mtrl-sci)
引用方式: arXiv:2508.21508 [cond-mat.mtrl-sci]
  (或者 arXiv:2508.21508v1 [cond-mat.mtrl-sci] 对于此版本)
  https://doi.org/10.48550/arXiv.2508.21508
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Nitesh Kumar [查看电子邮件]
[v1] 星期五, 2025 年 8 月 29 日 10:46:06 UTC (967 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
cond-mat.mtrl-sci
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-08
切换浏览方式为:
cond-mat

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号