Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:2504.00393

帮助 | 高级搜索

计算机科学 > 机器学习

arXiv:2504.00393 (cs)
[提交于 2025年4月1日 ]

标题: 基于部分充电曲线的商用钠离子电池状态估计的深度学习:使用多温度老化数据集验证

标题: Deep learning for state estimation of commercial sodium-ion batteries using partial charging profiles: validation with a multi-temperature ageing dataset

Authors:Jiapeng Liu, Lunte Li, Jing Xiang, Laiyong Xie, Yuhao Wang, Francesco Ciucci
摘要: Accurately predicting the state of health for sodium-ion batteries is crucial for managing battery modules, playing a vital role in ensuring operational safety. However, highly accurate models available thus far are rare due to a lack of aging data for sodium-ion batteries. In this study, we experimentally collected 53 single cells at four temperatures (0, 25, 35, and 45 {\deg }C), along with two battery modules in the lab. By utilizing the charging profiles, we were able to predict the SOC, capacity, and SOH simultaneously. This was achieved by designing a new framework that integrates the neural ordinary differential equation and 2D convolutional neural networks, using the partial charging profile as input. The charging profile is partitioned into segments, and each segment is fed into the network to output the SOC. For capacity and SOH prediction, we first aggregated the extracted features corresponding to segments from one cycle, after which an embedding block for temperature is concatenated for the final prediction. This novel approach eliminates the issue of multiple outputs for a single target. Our model demonstrated an $R^2$ accuracy of 0.998 for SOC and 0.997 for SOH across single cells at various temperatures. Furthermore, the trained model can be employed to predict single cells at temperatures outside the training set and battery modules with different capacity and current levels. The results presented here highlight the high accuracy of our model and its capability to predict multiple targets simultaneously using a partial charging profile.
摘要: Accurately predicting the state of health for sodium-ion batteries is crucial for managing battery modules, playing a vital role in ensuring operational safety. However, highly accurate models available thus far are rare due to a lack of aging data for sodium-ion batteries. In this study, we experimentally collected 53 single cells at four temperatures (0, 25, 35, and 45 {\deg}C), along with two battery modules in the lab. By utilizing the charging profiles, we were able to predict the SOC, capacity, and SOH simultaneously. This was achieved by designing a new framework that integrates the neural ordinary differential equation and 2D convolutional neural networks, using the partial charging profile as input. The charging profile is partitioned into segments, and each segment is fed into the network to output the SOC. For capacity and SOH prediction, we first aggregated the extracted features corresponding to segments from one cycle, after which an embedding block for temperature is concatenated for the final prediction. This novel approach eliminates the issue of multiple outputs for a single target. Our model demonstrated an $R^2$ accuracy of 0.998 for SOC and 0.997 for SOH across single cells at various temperatures. Furthermore, the trained model can be employed to predict single cells at temperatures outside the training set and battery modules with different capacity and current levels. The results presented here highlight the high accuracy of our model and its capability to predict multiple targets simultaneously using a partial charging profile.
主题: 机器学习 (cs.LG)
引用方式: arXiv:2504.00393 [cs.LG]
  (或者 arXiv:2504.00393v1 [cs.LG] 对于此版本)
  https://doi.org/10.48550/arXiv.2504.00393
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Jiapeng Liu [查看电子邮件]
[v1] 星期二, 2025 年 4 月 1 日 03:28:13 UTC (1,322 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • 其他格式
许可图标 查看许可
当前浏览上下文:
cs
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-04
切换浏览方式为:
cs.LG

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号