Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:2412.06936

帮助 | 高级搜索

计算机科学 > 计算机与社会

arXiv:2412.06936 (cs)
[提交于 2024年12月9日 ]

标题: 通过开源协作创建协作式人工智能政策制定平台

标题: Creating a Cooperative AI Policymaking Platform through Open Source Collaboration

Authors:Aiden Lewington, Alekhya Vittalam, Anshumaan Singh, Anuja Uppuluri, Arjun Ashok, Ashrith Mandayam Athmaram, Austin Milt, Benjamin Smith, Charlie Weinberger, Chatanya Sarin, Christoph Bergmeir, Cliff Chang, Daivik Patel, Daniel Li, David Bell, Defu Cao, Donghwa Shin, Edward Kang, Edwin Zhang, Enhui Li, Felix Chen, Gabe Smithline, Haipeng Chen, Henry Gasztowtt, Hoon Shin, Jiayun Zhang, Joshua Gray, Khai Hern Low, Kishan Patel, Lauren Hannah Cooke, Marco Burstein, Maya Kalapatapu, Mitali Mittal, Raymond Chen, Rosie Zhao, Sameen Majid, Samya Potlapalli, Shang Wang, Shrenik Patel, Shuheng Li, Siva Komaragiri, Song Lu, Sorawit Siangjaeo, Sunghoo Jung, Tianyu Zhang, Valery Mao, Vikram Krishnakumar, Vincent Zhu, Wesley Kam, Xingzhe Li, Yumeng Liu
摘要: 人工智能(AI)的进步带来了重大风险和机遇,需要改进治理以减轻社会危害并促进公平利益。 当前的激励机制和监管延迟可能阻碍负责任的AI开发和部署,尤其是在大型语言模型(LLMs)的变革潜力背景下。 为应对这些挑战,我们提议开发以下三个贡献:(1)一个集成经济和自然语言政策数据的大规模多模态文本和经济时间序列基础模型,以增强预测和决策能力,(2)用于获取多样且具有代表性的观点的算法机制,以支持数据驱动的公共政策建议的制定,(3)一个由AI驱动的网络平台,用于支持透明、包容和数据驱动的政策制定。
摘要: Advances in artificial intelligence (AI) present significant risks and opportunities, requiring improved governance to mitigate societal harms and promote equitable benefits. Current incentive structures and regulatory delays may hinder responsible AI development and deployment, particularly in light of the transformative potential of large language models (LLMs). To address these challenges, we propose developing the following three contributions: (1) a large multimodal text and economic-timeseries foundation model that integrates economic and natural language policy data for enhanced forecasting and decision-making, (2) algorithmic mechanisms for eliciting diverse and representative perspectives, enabling the creation of data-driven public policy recommendations, and (3) an AI-driven web platform for supporting transparent, inclusive, and data-driven policymaking.
主题: 计算机与社会 (cs.CY) ; 人工智能 (cs.AI); 机器学习 (cs.LG)
引用方式: arXiv:2412.06936 [cs.CY]
  (或者 arXiv:2412.06936v1 [cs.CY] 对于此版本)
  https://doi.org/10.48550/arXiv.2412.06936
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Eddie Zhang [查看电子邮件]
[v1] 星期一, 2024 年 12 月 9 日 19:25:29 UTC (4,324 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
cs
< 上一篇   |   下一篇 >
新的 | 最近的 | 2024-12
切换浏览方式为:
cs.AI
cs.CY
cs.LG

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号