Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:2507.10457

帮助 | 高级搜索

计算机科学 > 密码学与安全

arXiv:2507.10457 (cs)
[提交于 2025年7月14日 ]

标题: 逻辑层提示控制注入(LPCI):代理系统中的一类新型安全漏洞

标题: Logic layer Prompt Control Injection (LPCI): A Novel Security Vulnerability Class in Agentic Systems

Authors:Hammad Atta, Ken Huang, Manish Bhatt, Kamal Ahmed, Muhammad Aziz Ul Haq, Yasir Mehmood
摘要: 大型语言模型(LLMs)与企业系统的集成创造了一类新的隐蔽安全漏洞,尤其是在逻辑执行层和持久化内存上下文中。 在本文中,我们介绍了逻辑层提示控制注入(LPCI),这是一种新型攻击类别,其中编码的、延迟的和条件触发的有效载荷被嵌入到内存、向量存储或工具输出中。 这些有效载荷可以绕过传统的输入过滤器,并在会话中触发未经授权的行为。
摘要: The integration of large language models (LLMs) into enterprise systems has created a new class of covert security vulnerabilities, particularly within logic-execution layers and persistent-memory contexts. In this paper, we introduce Logic-Layer Prompt Control Injection (LPCI), a novel attack category in which encoded, delayed, and conditionally triggered payloads are embedded in memory, vector stores, or tool outputs. These payloads can bypass conventional input filters and trigger unauthorised behaviour across sessions.
主题: 密码学与安全 (cs.CR) ; 人工智能 (cs.AI); 机器学习 (cs.LG)
引用方式: arXiv:2507.10457 [cs.CR]
  (或者 arXiv:2507.10457v1 [cs.CR] 对于此版本)
  https://doi.org/10.48550/arXiv.2507.10457
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Manish Bhatt [查看电子邮件]
[v1] 星期一, 2025 年 7 月 14 日 16:37:05 UTC (1,761 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
cs.CR
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-07
切换浏览方式为:
cs
cs.AI
cs.LG

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号