Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > stat > arXiv:2501.02208

帮助 | 高级搜索

统计学 > 机器学习

arXiv:2501.02208 (stat)
[提交于 2025年1月4日 ]

标题: 通过加速交替投影的鲁棒多维缩放

标题: Robust Multi-Dimensional Scaling via Accelerated Alternating Projections

Authors:Tong Deng, Tianming Wang
摘要: 我们在这篇论文中考虑了鲁棒的多维缩放(RMDS)问题。 目标是从可能被异常值破坏的成对距离中定位点的位置。 受经典MDS理论和鲁棒主成分分析(RPCA)问题的非凸方法的启发,我们提出了一种基于交替投影的算法,并通过切空间投影技术进一步加速。 对于所提出的算法,如果异常值足够稀疏,我们可以在中心化和旋转对齐后建立重构点到原始点的线性收敛性。 数值实验验证了所提出算法的最先进性能。
摘要: We consider the robust multi-dimensional scaling (RMDS) problem in this paper. The goal is to localize point locations from pairwise distances that may be corrupted by outliers. Inspired by classic MDS theories, and nonconvex works for the robust principal component analysis (RPCA) problem, we propose an alternating projection based algorithm that is further accelerated by the tangent space projection technique. For the proposed algorithm, if the outliers are sparse enough, we can establish linear convergence of the reconstructed points to the original points after centering and rotation alignment. Numerical experiments verify the state-of-the-art performances of the proposed algorithm.
主题: 机器学习 (stat.ML) ; 机器学习 (cs.LG); 优化与控制 (math.OC)
引用方式: arXiv:2501.02208 [stat.ML]
  (或者 arXiv:2501.02208v1 [stat.ML] 对于此版本)
  https://doi.org/10.48550/arXiv.2501.02208
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Tianming Wang [查看电子邮件]
[v1] 星期六, 2025 年 1 月 4 日 06:28:10 UTC (129 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
cs.LG
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-01
切换浏览方式为:
cs
math
math.OC
stat
stat.ML

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号