Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > econ > arXiv:2311.18759

帮助 | 高级搜索

经济学 > 计量经济学

arXiv:2311.18759 (econ)
[提交于 2023年11月30日 ]

标题: Bootstrap推断在部分线性二元选择模型中

标题: Bootstrap Inference on Partially Linear Binary Choice Model

Authors:Wenzheng Gao, Zhenting Sun
摘要: 部分线性二元选择模型可用于估计结构方程,其中非线性可能由于边际收益递减、不同的生命周期阶段或繁忙的物理现象而出现。 该模型的推断过程基于分析渐近近似,在样本量不是足够大时,有限样本中的推断可能不可靠。 本文提出了该模型的引导推断方法。 蒙特卡洛模拟显示,与基于渐近近似的过程相比,所提出的推断方法在有限样本中表现良好。
摘要: The partially linear binary choice model can be used for estimating structural equations where nonlinearity may appear due to diminishing marginal returns, different life cycle regimes, or hectic physical phenomena. The inference procedure for this model based on the analytic asymptotic approximation could be unreliable in finite samples if the sample size is not sufficiently large. This paper proposes a bootstrap inference approach for the model. Monte Carlo simulations show that the proposed inference method performs well in finite samples compared to the procedure based on the asymptotic approximation.
评论: 10页
主题: 计量经济学 (econ.EM)
引用方式: arXiv:2311.18759 [econ.EM]
  (或者 arXiv:2311.18759v1 [econ.EM] 对于此版本)
  https://doi.org/10.48550/arXiv.2311.18759
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Zhenting Sun [查看电子邮件]
[v1] 星期四, 2023 年 11 月 30 日 18:01:11 UTC (11 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
econ.EM
< 上一篇   |   下一篇 >
新的 | 最近的 | 2023-11
切换浏览方式为:
econ

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号