Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > gr-qc > arXiv:gr-qc/0510099

帮助 | 高级搜索

广义相对论与量子宇宙学

arXiv:gr-qc/0510099 (gr-qc)
[提交于 2005年10月23日 ]

标题: 柱坐标系下与磁流体动力学中磁场扩散相关的Fokker-Planck方程的潜在对称性和不变解,包括霍尔电流

标题: Potential symmetry and invariant solutions of Fokker-Planck equation in cylindrical coordinates related to magnetic field diffusion in magnetohydrodynamics including the Hall current

Authors:A. H. Khater, D. K. Callebaut, S. F. Abdul-Aziz, T. N. Abdelhameed
摘要: 涉及潜在对称性的李群被应用于与不可压缩物质的磁流体动力学方程组相关的情况,其中包含有限电阻率和圆柱几何中的霍尔电流的欧姆定律。 一些简化允许得到一个福克-普朗克类型的方程。 获得了涉及时间依赖流动和霍尔电流效应的不变解。 这种方法的一些有趣的结果是新的精确解,这些解似乎在文献中没有被报道过。
摘要: Lie groups involving potential symmetries are applied in connection with the system of magnetohydrodynamic equations for incompressible matter with Ohm's law for finite resistivity and Hall current in cylindrical geometry. Some simplifications allow to obtain a Fokker-Planck type equation. Invariant solutions are obtained involving the effects of time-dependent flow and the Hall-current. Some interesting side results of this approach are new exact solutions that do not seem to have been reported in the literature.
评论: 14页,9图
主题: 广义相对论与量子宇宙学 (gr-qc)
引用方式: arXiv:gr-qc/0510099
  (或者 arXiv:gr-qc/0510099v1 对于此版本)
  https://doi.org/10.48550/arXiv.gr-qc/0510099
通过 DataCite 发表的 arXiv DOI
相关 DOI: https://doi.org/10.1140/epjb/e2006-00138-5
链接到相关资源的 DOI

提交历史

来自: Ragab Gad [查看电子邮件]
[v1] 星期日, 2005 年 10 月 23 日 09:45:18 UTC (245 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
gr-qc
< 上一篇   |   下一篇 >
新的 | 最近的 | 2005-10

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号