数学 > 偏微分方程分析
[提交于 2024年2月17日
]
标题: 具有最大阶扰动的克莱因-戈登方程的可约性
标题: Reducibility of Klein-Gordon equations with maximal order perturbations
摘要: We prove that all the solutions of a quasi-periodically forced linear Klein-Gordon equation $\psi_{tt}-\psi_{xx}+\mathtt{m}\psi+Q(\omega t)\psi=0 $ where $ Q(\omega t) := a^{(2)}(\omega t, x) \partial_{xx} + a^{(1)}(\omega t, x)\partial_x + a^{(0)}(\omega t, x) $ is a differential operator of order $ 2 $, parity preserving and reversible, are almost periodic in time and uniformly bounded for all times, provided that the coefficients $ a^{(2) }, a^{(1) }, a^{(0) } $ are small enough and the forcing frequency $\omega\in {\mathbb R}^{\nu}$ belongs to a Borel set of asymptotically full measure. This result is obtained by reducing the Klein-Gordon equation to a diagonal constant coefficient system with purely imaginary eigenvalues. The main difficulty is the presence in the perturbation $ Q (\omega t) $ of the second order differential operator $ a^{(2)}(\omega t, x)\partial_{xx} $. In suitable coordinates the Klein-Gordon equation is the composition of two backward/forward quasi-periodic in time perturbed transport equations with non-constant coefficients, up to lower order pseudo-differential remainders. A key idea is to straighten this first order pseudo-differential operator with bi-characteristics through a novel quantitative Egorov analysis.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.