数学 > 概率
[提交于 2024年9月24日
]
标题: 二维离散GFF的渗透 II. 双侧水平集的连通性性质
标题: Percolation of discrete GFF in dimension two II. Connectivity properties of two-sided level sets
摘要: 我们研究二维离散高斯自由场(DGFF)的双侧水平集渗透问题。 对于在边长为$N$的盒子$B_N$中定义的 DGFF$\varphi$,我们证明,在高概率下,存在顶点集$z$中的低交叉,对于任何$\varepsilon>0$,其值为$|\varphi(z)|\le\varepsilon\sqrt{\log N}$,而$\varphi$的平均值和最大值分别为$\sqrt{\log N}$和$\log N$的阶。 我们的方法也强烈表明,在$C\sqrt{\log\log N}$以下存在这样的交叉点,对于足够大的$C$。 作为结果,我们也得到了随机游走的厚点集的连通性性质。 我们依赖于DGFF与临界强度$\alpha=1/2$的随机游走环流(RWLS)之间的同构,并进一步将研究扩展到所有亚临界强度$\alpha\in(0,1/2)$的RWLS的占据场。 For the RWLS in $B_N$, we show that for $\lambda$ large enough, there exist low crossings of $B_N$, remaining below $\lambda$, even though the average occupation time is of order $\log N$. Our results thus uncover a non-trivial phase-transition for this highly-dependent percolation model. For both the DGFF and the occupation field of the RWLS, we further show that such low crossings can be found in the "carpet" of the RWLS - the set of vertices which are not in the interior of any cluster of loops. This work is the second part of a series of two papers. It relies heavily on tools and techniques developed for the RWLS in the first part, especially surgery arguments on loops, which were made possible by a separation result in the RWLS. This allowed us, in that companion paper, to derive several useful properties such as quasi-multiplicativity, and obtain a precise upper bound for the probability that two large connected components of loops "almost touch", which is instrumental here.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.