Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2409.16273

帮助 | 高级搜索

数学 > 概率

arXiv:2409.16273 (math)
[提交于 2024年9月24日 ]

标题: 二维离散GFF的渗透 II. 双侧水平集的连通性性质

标题: Percolation of discrete GFF in dimension two II. Connectivity properties of two-sided level sets

Authors:Yifan Gao, Pierre Nolin, Wei Qian
摘要: 我们研究二维离散高斯自由场(DGFF)的双侧水平集渗透问题。 对于在边长为$N$的盒子$B_N$中定义的 DGFF$\varphi$,我们证明,在高概率下,存在顶点集$z$中的低交叉,对于任何$\varepsilon>0$,其值为$|\varphi(z)|\le\varepsilon\sqrt{\log N}$,而$\varphi$的平均值和最大值分别为$\sqrt{\log N}$和$\log N$的阶。 我们的方法也强烈表明,在$C\sqrt{\log\log N}$以下存在这样的交叉点,对于足够大的$C$。 作为结果,我们也得到了随机游走的厚点集的连通性性质。 我们依赖于DGFF与临界强度$\alpha=1/2$的随机游走环流(RWLS)之间的同构,并进一步将研究扩展到所有亚临界强度$\alpha\in(0,1/2)$的RWLS的占据场。 For the RWLS in $B_N$, we show that for $\lambda$ large enough, there exist low crossings of $B_N$, remaining below $\lambda$, even though the average occupation time is of order $\log N$. Our results thus uncover a non-trivial phase-transition for this highly-dependent percolation model. For both the DGFF and the occupation field of the RWLS, we further show that such low crossings can be found in the "carpet" of the RWLS - the set of vertices which are not in the interior of any cluster of loops. This work is the second part of a series of two papers. It relies heavily on tools and techniques developed for the RWLS in the first part, especially surgery arguments on loops, which were made possible by a separation result in the RWLS. This allowed us, in that companion paper, to derive several useful properties such as quasi-multiplicativity, and obtain a precise upper bound for the probability that two large connected components of loops "almost touch", which is instrumental here.
摘要: We study percolation of two-sided level sets for the discrete Gaussian free field (DGFF) in 2D. For a DGFF $\varphi$ defined in a box $B_N$ with side length $N$, we show that with high probability, there exist low crossings in the set of vertices $z$ with $|\varphi(z)|\le\varepsilon\sqrt{\log N}$ for any $\varepsilon>0$, while the average and the maximum of $\varphi$ are of order $\sqrt{\log N}$ and $\log N$, respectively. Our method also strongly suggests the existence of such crossings below $C\sqrt{\log\log N}$, for $C$ large enough. As a consequence, we also obtain connectivity properties of the set of thick points of a random walk. We rely on an isomorphism between the DGFF and the random walk loop soup (RWLS) with critical intensity $\alpha=1/2$, and further extend our study to the occupation field of the RWLS for all subcritical intensities $\alpha\in(0,1/2)$. For the RWLS in $B_N$, we show that for $\lambda$ large enough, there exist low crossings of $B_N$, remaining below $\lambda$, even though the average occupation time is of order $\log N$. Our results thus uncover a non-trivial phase-transition for this highly-dependent percolation model. For both the DGFF and the occupation field of the RWLS, we further show that such low crossings can be found in the "carpet" of the RWLS - the set of vertices which are not in the interior of any cluster of loops. This work is the second part of a series of two papers. It relies heavily on tools and techniques developed for the RWLS in the first part, especially surgery arguments on loops, which were made possible by a separation result in the RWLS. This allowed us, in that companion paper, to derive several useful properties such as quasi-multiplicativity, and obtain a precise upper bound for the probability that two large connected components of loops "almost touch", which is instrumental here.
评论: 71页,8图
主题: 概率 (math.PR) ; 数学物理 (math-ph)
引用方式: arXiv:2409.16273 [math.PR]
  (或者 arXiv:2409.16273v1 [math.PR] 对于此版本)
  https://doi.org/10.48550/arXiv.2409.16273
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Pierre Nolin [查看电子邮件]
[v1] 星期二, 2024 年 9 月 24 日 17:45:22 UTC (335 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math-ph
< 上一篇   |   下一篇 >
新的 | 最近的 | 2024-09
切换浏览方式为:
math
math.MP
math.PR

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号