数学 > 组合数学
[提交于 2025年8月7日
]
标题: 改进的图的围长为5的最大尺寸的下界
标题: Improved lower bounds on the maximum size of graphs with girth 5
摘要: We present a new algorithm for improving lower bounds on $ex(n;\{C_3,C_4\})$, the maximum size (number of edges) of an $n$-vertex graph of girth at least 5. The core of our algorithm is a variant of a hill-climbing heuristic introduced by Exoo, McKay, Myrvold and Nadon (2011) to find small cages. Our algorithm considers a range of values of $n$ in multiple passes. In each pass, the hill-climbing heuristic for a specific value of $n$ is initialized with a few graphs obtained by modifying near-extremal graphs previously found for neighboring values of $n$, allowing to `propagate' good patterns that were found. 聚焦于当前超出精确方法范围的$n\in \{74,75, \dots, 198\}$范围,我们的方法在该范围内的所有$n$值上对$ex(n;\{C_3,C_4\})$的现有下界进行了改进,除了两个$n$值($n=96,97$)。
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.