Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:2504.03451

帮助 | 高级搜索

计算机科学 > 硬件架构

arXiv:2504.03451 (cs)
[提交于 2025年4月4日 ]

标题: NDFT:通过近数据计算系统的软硬件协同设计加速密度泛函理论计算

标题: NDFT: Accelerating Density Functional Theory Calculations via Hardware/Software Co-Design on Near-Data Computing System

Authors:Qingcai Jiang, Buxin Tu, Xiaoyu Hao, Junshi Chen, Hong An
摘要: Linear-response time-dependent Density Functional Theory (LR-TDDFT) is a widely used method for accurately predicting the excited-state properties of physical systems. Previous works have attempted to accelerate LR-TDDFT using heterogeneous systems such as GPUs, FPGAs, and the Sunway architecture. However, a major drawback of these approaches is the constant data movement between host memory and the memory of the heterogeneous systems, which results in substantial \textit{数据移动开销}. Moreover, these works focus primarily on optimizing the compute-intensive portions of LR-TDDFT, despite the fact that the calculation steps are fundamentally \textit{内存绑定的}. To address these challenges, we propose NDFT, a \underline{N}ear-\underline{D}ata Density \underline{F}unctional \underline{T}heory framework. Specifically, we design a novel task partitioning and scheduling mechanism to offload each part of LR-TDDFT to the most suitable computing units within a CPU-NDP system. Additionally, we implement a hardware/software co-optimization of a critical kernel in LR-TDDFT to further enhance performance on the CPU-NDP system. Our results show that NDFT achieves performance improvements of 5.2x and 2.5x over CPU and GPU baselines, respectively, on a large physical system.
摘要: Linear-response time-dependent Density Functional Theory (LR-TDDFT) is a widely used method for accurately predicting the excited-state properties of physical systems. Previous works have attempted to accelerate LR-TDDFT using heterogeneous systems such as GPUs, FPGAs, and the Sunway architecture. However, a major drawback of these approaches is the constant data movement between host memory and the memory of the heterogeneous systems, which results in substantial \textit{data movement overhead}. Moreover, these works focus primarily on optimizing the compute-intensive portions of LR-TDDFT, despite the fact that the calculation steps are fundamentally \textit{memory-bound}. To address these challenges, we propose NDFT, a \underline{N}ear-\underline{D}ata Density \underline{F}unctional \underline{T}heory framework. Specifically, we design a novel task partitioning and scheduling mechanism to offload each part of LR-TDDFT to the most suitable computing units within a CPU-NDP system. Additionally, we implement a hardware/software co-optimization of a critical kernel in LR-TDDFT to further enhance performance on the CPU-NDP system. Our results show that NDFT achieves performance improvements of 5.2x and 2.5x over CPU and GPU baselines, respectively, on a large physical system.
主题: 硬件架构 (cs.AR) ; 计算物理 (physics.comp-ph)
引用方式: arXiv:2504.03451 [cs.AR]
  (或者 arXiv:2504.03451v1 [cs.AR] 对于此版本)
  https://doi.org/10.48550/arXiv.2504.03451
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Qingcai Jiang [查看电子邮件]
[v1] 星期五, 2025 年 4 月 4 日 13:51:24 UTC (3,619 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
physics.comp-ph
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-04
切换浏览方式为:
cs
cs.AR
physics

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号