计算机科学 > 硬件架构
[提交于 2025年4月4日
]
标题: NDFT:通过近数据计算系统的软硬件协同设计加速密度泛函理论计算
标题: NDFT: Accelerating Density Functional Theory Calculations via Hardware/Software Co-Design on Near-Data Computing System
摘要: Linear-response time-dependent Density Functional Theory (LR-TDDFT) is a widely used method for accurately predicting the excited-state properties of physical systems. Previous works have attempted to accelerate LR-TDDFT using heterogeneous systems such as GPUs, FPGAs, and the Sunway architecture. However, a major drawback of these approaches is the constant data movement between host memory and the memory of the heterogeneous systems, which results in substantial \textit{数据移动开销}. Moreover, these works focus primarily on optimizing the compute-intensive portions of LR-TDDFT, despite the fact that the calculation steps are fundamentally \textit{内存绑定的}. To address these challenges, we propose NDFT, a \underline{N}ear-\underline{D}ata Density \underline{F}unctional \underline{T}heory framework. Specifically, we design a novel task partitioning and scheduling mechanism to offload each part of LR-TDDFT to the most suitable computing units within a CPU-NDP system. Additionally, we implement a hardware/software co-optimization of a critical kernel in LR-TDDFT to further enhance performance on the CPU-NDP system. Our results show that NDFT achieves performance improvements of 5.2x and 2.5x over CPU and GPU baselines, respectively, on a large physical system.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.