Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > stat > arXiv:1209.1588v1

帮助 | 高级搜索

统计学 > 方法论

arXiv:1209.1588v1 (stat)
[提交于 2012年9月7日 ]

标题: 非参数模型中基于独立性条件的识别与适定性问题

标题: Identification and well-posedness in nonparametric models with independence conditions

Authors:Victoria Zinde-Walsh
摘要: 本文对几类模型进行了非参数分析,其中包括经典测量误差、变量误差回归、因子模型以及其他可以用卷积方程形式表示的模型。 这里关注的是解的存在性条件、非参数识别以及广义函数空间(缓增广义函数)中的适定性问题。 与在函数空间中工作相比,这一空间通过放宽假设并扩展结果,能够涵盖更广泛的模型种类,例如无需密度存在性假设。 定义了解存在的(广义)函数类,并讨论了识别条件、部分识别及其含义。 给出了适定性的条件,并考察了与之相关的插件估计和正则化问题。
摘要: This paper provides a nonparametric analysis for several classes of models, with cases such as classical measurement error, regression with errors in variables, factor models and other models that may be represented in a form involving convolution equations. The focus here is on conditions for existence of solutions, nonparametric identification and well-posedness in the space of generalized functions (tempered distributions). This space provides advantages over working in function spaces by relaxing assumptions and extending the results to include a wider variety of models, for example by not requiring existence of density. Classes of (generalized) functions for which solutions exist are defined; identification conditions, partial identification and its implications are discussed. Conditions for well-posedness are given and the related issues of plug-in estimation and regularization are examined.
主题: 方法论 (stat.ME)
引用方式: arXiv:1209.1588 [stat.ME]
  (或者 arXiv:1209.1588v1 [stat.ME] 对于此版本)
  https://doi.org/10.48550/arXiv.1209.1588
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Victoria Zinde-Walsh [查看电子邮件]
[v1] 星期五, 2012 年 9 月 7 日 16:59:18 UTC (27 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
stat.ME
< 上一篇   |   下一篇 >
新的 | 最近的 | 2012-09
切换浏览方式为:
stat

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号