Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:1211.4657v2

帮助 | 高级搜索

计算机科学 > 机器学习

arXiv:1211.4657v2 (cs)
[提交于 2012年11月20日 (v1) ,最后修订 2014年5月1日 (此版本, v2)]

标题: 森林稀疏性在多通道压缩感知中的应用

标题: Forest Sparsity for Multi-channel Compressive Sensing

Authors:Chen Chen, Yeqing Li, Junzhou Huang
摘要: 本文研究了一种新的压缩感知模型,用于多通道稀疏数据,其中每个通道可以表示为一个分层树,并且不同通道之间高度相关。因此,完整数据可以遵循森林结构,我们称此性质为\emph{森林稀疏性}。该模型利用了通道内和通道间的相关性,并丰富了现有的基于模型的压缩感知理论家族。提出的理论表明,对于具有森林稀疏性的多通道数据,仅需要$\mathcal{O}(Tk+\log(N/k))$次测量即可,其中$T$是通道数量,$N$和$k$分别是每个通道的长度和稀疏度。 这个结果远优于树稀疏性的$\mathcal{O}(Tk+T\log(N/k))$、联合稀疏性的$\mathcal{O}(Tk+k\log(N/k))$,并且远远优于标准稀疏性的$\mathcal{O}(Tk+Tk\log(N/k))$。 此外,我们将森林稀疏性理论扩展到多测量向量问题中,其中测量矩阵是一个块对角矩阵。 结果表明,当数据在每个通道中具有相同能量时,所需的测量界限可以与密集随机测量矩阵的情况相同。 提出了一种新算法,并将其应用于四个示例应用中以验证所提出的模型的优势。 大量的实验展示了所提出的理论和算法的有效性和高效性。
摘要: In this paper, we investigate a new compressive sensing model for multi-channel sparse data where each channel can be represented as a hierarchical tree and different channels are highly correlated. Therefore, the full data could follow the forest structure and we call this property as \emph{forest sparsity}. It exploits both intra- and inter- channel correlations and enriches the family of existing model-based compressive sensing theories. The proposed theory indicates that only $\mathcal{O}(Tk+\log(N/k))$ measurements are required for multi-channel data with forest sparsity, where $T$ is the number of channels, $N$ and $k$ are the length and sparsity number of each channel respectively. This result is much better than $\mathcal{O}(Tk+T\log(N/k))$ of tree sparsity, $\mathcal{O}(Tk+k\log(N/k))$ of joint sparsity, and far better than $\mathcal{O}(Tk+Tk\log(N/k))$ of standard sparsity. In addition, we extend the forest sparsity theory to the multiple measurement vectors problem, where the measurement matrix is a block-diagonal matrix. The result shows that the required measurement bound can be the same as that for dense random measurement matrix, when the data shares equal energy in each channel. A new algorithm is developed and applied on four example applications to validate the benefit of the proposed model. Extensive experiments demonstrate the effectiveness and efficiency of the proposed theory and algorithm.
评论: 被IEEE Transactions on Signal Processing接受,2014
主题: 机器学习 (cs.LG) ; 计算机视觉与模式识别 (cs.CV); 信息论 (cs.IT); 机器学习 (stat.ML)
引用方式: arXiv:1211.4657 [cs.LG]
  (或者 arXiv:1211.4657v2 [cs.LG] 对于此版本)
  https://doi.org/10.48550/arXiv.1211.4657
通过 DataCite 发表的 arXiv DOI
相关 DOI: https://doi.org/10.1109/TSP.2014.2318138
链接到相关资源的 DOI

提交历史

来自: Chen Chen [查看电子邮件]
[v1] 星期二, 2012 年 11 月 20 日 03:22:45 UTC (305 KB)
[v2] 星期四, 2014 年 5 月 1 日 15:56:00 UTC (2,013 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
cs.LG
< 上一篇   |   下一篇 >
新的 | 最近的 | 2012-11
切换浏览方式为:
cs
cs.CV
cs.IT
math
math.IT
stat
stat.ML

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号