统计学 > 方法论
[提交于 2015年7月2日
(此版本)
, 最新版本 2015年7月3日 (v2)
]
标题: 全局自适应分位数回归与超高维数据
标题: Globally adaptive quantile regression with ultra-high dimensional data
摘要: 分位数回归已成为分析在实践中经常遇到的异质协变量-响应关联的有用工具。 高维协变量的分位数回归方法的发展主要集中在单个或多个分位数水平上的模型稀疏性检查,这些水平通常由用户随意指定。 由此得到的模型可能对分位数水平的具体选择敏感,导致解释困难并削弱对结果的信心。 在本文中,我们提出了一个用于高维情况下分位数回归的新惩罚框架。 我们采用自适应L1惩罚,并且更重要的是,为一组分位数水平提出了一种统一的调参选择方法,以避免在单个分位数水平上模型选择的一些潜在问题。 我们提出的方法在连续的分位数水平范围内实现了回归分位数估计的一致收缩,增强了现有惩罚分位数回归方法的灵活性和稳健性。 我们的理论结果包括统一收敛的oracle速率和参数估计量的弱收敛性。 我们还使用数值研究来确认我们的理论结果,并说明我们提议的实用性。
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.