Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:1601.00399v1

帮助 | 高级搜索

数学 > 统计理论

arXiv:1601.00399v1 (math)
[提交于 2016年1月4日 ]

标题: TO_BE_TRANSLATED: A Multiresolution Analysis Framework for the Statistical Analysis of Incomplete Rankings

标题: A Multiresolution Analysis Framework for the Statistical Analysis of Incomplete Rankings

Authors:Eric Sibony (LTCI), Stéphan Clémençon (LTCI), Jérémie Jakubowicz (SAMOVAR)
摘要: TO_BE_TRANSLATED: Though the statistical analysis of ranking data has been a subject of interest over the past centuries, especially in economics, psychology or social choice theory, it has been revitalized in the past 15 years by recent applications such as recommender or search engines and is receiving now increasing interest in the machine learning literature. Numerous modern systems indeed generate ranking data, representing for instance ordered results to a query or user preferences. Each such ranking usually involves a small but varying subset of the whole catalog of items only. The study of the variability of these data, i.e. the statistical analysis of incomplete rank-ings, is however a great statistical and computational challenge, because of their heterogeneity and the related combinatorial complexity of the problem. Whereas many statistical methods for analyzing full rankings (orderings of all the items in the catalog) are documented in the dedicated literature, partial rankings (full rankings with ties) or pairwise comparisons, only a few approaches are available today to deal with incomplete ranking, relying each on a strong specific assumption. It is the purpose of this article to introduce a novel general framework for the statistical analysis of incomplete rankings. It is based on a representation tailored to these specific data, whose construction is also explained here, which fits with the natural multi-scale structure of incomplete rankings and provides a new decomposition of rank information with a multiresolu-tion analysis interpretation (MRA). We show that the MRA representation naturally allows to overcome both the statistical and computational challenges without any structural assumption on the data. It therefore provides a general and flexible framework to solve a wide variety of statistical problems, where data are of the form of incomplete rankings.
摘要: Though the statistical analysis of ranking data has been a subject of interest over the past centuries, especially in economics, psychology or social choice theory, it has been revitalized in the past 15 years by recent applications such as recommender or search engines and is receiving now increasing interest in the machine learning literature. Numerous modern systems indeed generate ranking data, representing for instance ordered results to a query or user preferences. Each such ranking usually involves a small but varying subset of the whole catalog of items only. The study of the variability of these data, i.e. the statistical analysis of incomplete rank-ings, is however a great statistical and computational challenge, because of their heterogeneity and the related combinatorial complexity of the problem. Whereas many statistical methods for analyzing full rankings (orderings of all the items in the catalog) are documented in the dedicated literature, partial rankings (full rankings with ties) or pairwise comparisons, only a few approaches are available today to deal with incomplete ranking, relying each on a strong specific assumption. It is the purpose of this article to introduce a novel general framework for the statistical analysis of incomplete rankings. It is based on a representation tailored to these specific data, whose construction is also explained here, which fits with the natural multi-scale structure of incomplete rankings and provides a new decomposition of rank information with a multiresolu-tion analysis interpretation (MRA). We show that the MRA representation naturally allows to overcome both the statistical and computational challenges without any structural assumption on the data. It therefore provides a general and flexible framework to solve a wide variety of statistical problems, where data are of the form of incomplete rankings.
主题: 统计理论 (math.ST)
引用方式: arXiv:1601.00399 [math.ST]
  (或者 arXiv:1601.00399v1 [math.ST] 对于此版本)
  https://doi.org/10.48550/arXiv.1601.00399
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Eric Sibony [查看电子邮件]
[v1] 星期一, 2016 年 1 月 4 日 07:40:15 UTC (3,592 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.ST
< 上一篇   |   下一篇 >
新的 | 最近的 | 2016-01
切换浏览方式为:
math
stat
stat.TH

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号