数学 > 组合数学
[提交于 2016年1月4日
]
标题: TO_BE_TRANSLATED: On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^2)$
标题: On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^2)$
摘要: TO_BE_TRANSLATED: We study the dual linear code of points and generators on a non-singular Hermitian variety $\mathcal{H}(2n+1,q^2)$. We improve the earlier results for $n=2$, we solve the minimum distance problem for general $n$, we classify the $n$ smallest types of code words and we characterize the small weight code words as being a linear combination of these $n$ types.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.