数学 > 组合数学
[提交于 2016年1月29日
]
标题: TO_BE_TRANSLATED: Delta-matroids and Vassiliev invariants
标题: Delta-matroids and Vassiliev invariants
摘要: TO_BE_TRANSLATED: Vassiliev (finite type) invariants of knots can be described in terms of weight systems. These are functions on chord diagrams satisfying so-called 4-term relations. In the study of the sl2 weight system, it was shown that its value on a chord diagram depends on the intersection graph of the diagram rather than on the diagram itself. Moreover, it was shown that the value of this weight system on an intersection graph depends on the cy- cle matroid of the graph rather than on the graph itself. This result arose the question whether there is a natural way to introduce a 4-term relation on the space spanned by matroids, similar to the one for graphs. It happened however that the answer is negative: there are graphs having isomorphic cycle matroids such that applying the "second Vassiliev move" to a pair of corresponding vertices a;b of the graphs we obtain two graphs with nonisomorphic matroids. The goal of the present paper is to show that the situation is different for binary delta-matroids: one can define both the first and the second Vassiliev moves for binary delta-matroids and introduce a 4-term relation for them in such a way that the mapping taking a chord diagram to its delta-matroid respects the corresponding 4-term relations. Moreover, this mapping admits a natural extension to chord diagrams on several circles, which correspond to singular links. Delta-matroids were introduced by A. Bouchet for the purpose of studying embedded graphs, whence their relationship with (multiloop) chord diagrams is by no means unexpected. Some evidence for the existence of such a relationship can be found, for example, the Tutte polynomial for embedded graphs has been introduced. It was shown that this polynomial depends on the delta-matroid of the embedded graph rather than the graph itself and satises the Vassilev 4-term relation.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.