Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cond-mat > arXiv:1812.00286v1

帮助 | 高级搜索

凝聚态物理 > 中尺度与纳米尺度物理

arXiv:1812.00286v1 (cond-mat)
[提交于 2018年12月1日 (此版本) , 最新版本 2019年5月27日 (v2) ]

标题: TO_BE_TRANSLATED: Zero-Threshold Rectification Using Low Energy Barrier Nano-Magnets

标题: Zero-Threshold Rectification Using Low Energy Barrier Nano-Magnets

Authors:Shehrin Sayed, Kerem Y. Camsari, Rafatul Faria, Supriyo Datta
摘要: TO_BE_TRANSLATED: Nanomagnets with high energy barriers ($\sim$40-60 $k_BT$) have been the center of focus for various spintronics applications. Recently, low energy barrier magnets have attracted growing interest in the community for novel applications such as random number generation, stochastic oscillators, and probabilistic computation. In this paper, we predict that a low barrier magnet (LBM), either with an in-plane or perpendicular anisotropy, should exhibit zero-threshold rectification when combined with the physics of spin-momentum locking (SML) observed in high spin-orbit materials e.g. transition metals, semimetals, topological insulators, narrow band-gap semiconductors, etc. The basic idea is to measure the charge current induced spin accumulation in the SML channel using the LBM, while the magnetization of the LBM on average follows the accumulated spins due to the spin-orbit torque. Using experimentally benchmarked models, we show that these experiments can be used to characterize such stochastic magnets and extract parameters that determine (i) the spin-orbit torque induced magnetization pinning and (ii) the frequency band of rectification. We argue that the frequency band can be explained from the angular momentum conservation principles and provide an empirical expression that is valid for LBMs with in-plane and perpendicular anisotropies. The proposed structure could find application as highly sensitive passive RF detectors and as energy harvesters from weak ambient sources where standard technologies may not operate.
摘要: Nanomagnets with high energy barriers ($\sim$40-60 $k_BT$) have been the center of focus for various spintronics applications. Recently, low energy barrier magnets have attracted growing interest in the community for novel applications such as random number generation, stochastic oscillators, and probabilistic computation. In this paper, we predict that a low barrier magnet (LBM), either with an in-plane or perpendicular anisotropy, should exhibit zero-threshold rectification when combined with the physics of spin-momentum locking (SML) observed in high spin-orbit materials e.g. transition metals, semimetals, topological insulators, narrow band-gap semiconductors, etc. The basic idea is to measure the charge current induced spin accumulation in the SML channel using the LBM, while the magnetization of the LBM on average follows the accumulated spins due to the spin-orbit torque. Using experimentally benchmarked models, we show that these experiments can be used to characterize such stochastic magnets and extract parameters that determine (i) the spin-orbit torque induced magnetization pinning and (ii) the frequency band of rectification. We argue that the frequency band can be explained from the angular momentum conservation principles and provide an empirical expression that is valid for LBMs with in-plane and perpendicular anisotropies. The proposed structure could find application as highly sensitive passive RF detectors and as energy harvesters from weak ambient sources where standard technologies may not operate.
主题: 中尺度与纳米尺度物理 (cond-mat.mes-hall)
引用方式: arXiv:1812.00286 [cond-mat.mes-hall]
  (或者 arXiv:1812.00286v1 [cond-mat.mes-hall] 对于此版本)
  https://doi.org/10.48550/arXiv.1812.00286
通过 DataCite 发表的 arXiv DOI
期刊参考: Phys. Rev. Applied 11, 054063, 2019
相关 DOI: https://doi.org/10.1103/PhysRevApplied.11.054063
链接到相关资源的 DOI

提交历史

来自: Shehrin Sayed [查看电子邮件]
[v1] 星期六, 2018 年 12 月 1 日 23:28:57 UTC (847 KB)
[v2] 星期一, 2019 年 5 月 27 日 07:16:15 UTC (650 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • 其他格式
许可图标 查看许可
当前浏览上下文:
cond-mat.mes-hall
< 上一篇   |   下一篇 >
新的 | 最近的 | 2018-12
切换浏览方式为:
cond-mat

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号