Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > gr-qc > arXiv:1901.10009v2

帮助 | 高级搜索

广义相对论与量子宇宙学

arXiv:1901.10009v2 (gr-qc)
[提交于 2019年1月28日 (v1) ,最后修订 2019年4月13日 (此版本, v2)]

标题: 自发的曲率耦合张量化及其超越

标题: Spontaneous tensorization from curvature coupling and beyond

Authors:Fethi M. Ramazanoğlu
摘要: 我们推广了最近引入的扩展纯量-张量-高斯-博内(ESTGB)理论及其相关理论,以包括非纯量场(如矢量场)的自发增长。这类似于从Damour和Esposito-Farèse(DEF)提出的自发纯量化理论发展出自发张量化的研究计划。这种新扩展的理论家族在弱场测试中保持了DEF理论的吸引力,同时在强引力情况下也能提供显著信号。此外,它们提供了更丰富的现象学,包括像ESTGB中那样的黑洞自发张量化。这些理论以及我们讨论的其他可能的未来扩展,证明了引力中自发增长的普遍性。我们还注意到,具有导数耦合的理论需要特别关注,因为它们可能导致运动方程中出现潜在问题的高阶导数。
摘要: We generalize the recently introduced extended scalar-tensor-Gauss-Bonnet (ESTGB) theories and their close relatives to include spontaneous growth of nonscalar fields such as vectors. This is analogous to the program that developed spontaneous tensorization from the original spontaneous scalarization theory of Damour and Esposito-Far\`ese (DEF). The new larger family of theories conserves the appeal of the DEF theory in terms of conforming to weak-field tests and also providing large signals in strong gravity. Moreover, they provide a much richer phenomenology including spontaneous tensorization of black holes as in ESTGB. These theories, together with other possible future extensions that we discuss, testify to the ubiquity of spontaneous growth in gravity. We also note that theories with derivative coupling require special attention since they can lead to potentially problematic higher derivatives in the equations of motion.
评论: 6页。发表版本已出现在PRD上。主要结论没有改变,但对具有导数耦合的理论的讨论有实质性更新。
主题: 广义相对论与量子宇宙学 (gr-qc)
引用方式: arXiv:1901.10009 [gr-qc]
  (或者 arXiv:1901.10009v2 [gr-qc] 对于此版本)
  https://doi.org/10.48550/arXiv.1901.10009
通过 DataCite 发表的 arXiv DOI
期刊参考: Phys. Rev. D 99, 084015 (2019)
相关 DOI: https://doi.org/10.1103/PhysRevD.99.084015
链接到相关资源的 DOI

提交历史

来自: Fethi M. Ramazanoglu [查看电子邮件]
[v1] 星期一, 2019 年 1 月 28 日 21:36:05 UTC (12 KB)
[v2] 星期六, 2019 年 4 月 13 日 14:12:47 UTC (15 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
gr-qc
< 上一篇   |   下一篇 >
新的 | 最近的 | 2019-01

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号