Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > astro-ph > arXiv:1902.08076v1

帮助 | 高级搜索

天体物理学 > 天体物理学的仪器与方法

arXiv:1902.08076v1 (astro-ph)
[提交于 2019年2月21日 ]

标题: 使用GW170817校准引力波探测器

标题: Calibrating gravitational-wave detectors with GW170817

Authors:Reed Essick, Daniel E. Holz
摘要: The waveform of a compact binary coalescence is predicted by general relativity. It is therefore possible to directly constrain the response of a gravitational-wave (GW) detector by analyzing a signal's observed amplitude and phase evolution as a function of frequency. GW signals alone constrain the relative amplitude and phase between different frequencies within the same detector and between different detectors. We analyze GW170817's ability to calibrate the LIGO/Virgo detectors, finding a relative amplitude calibration precision of approximately $\pm20\%$ and relative phase precision of $\pm15^\circ$ (1-$\sigma$ uncertainty) between the LIGO Hanford and Livingston detectors. Incorporating additional information about the distance and inclination of the source from electromagnetic observations, the relative amplitude of the LIGO detectors can be tightened to $\sim\pm15\%$. We investigate the ability of future events to improve astronomical calibration. By simulating the cumulative uncertainties from an ensemble of detections, we find that with several hundred events with electromagnetic counterparts, or several thousand events without counterparts, we reach percent-level astronomical calibration. This corresponds to $\sim$5-10 years of operation at advanced LIGO and Virgo design sensitivity. It is to be emphasized that direct {\em 原位}\/ measurements of detector calibration provide significantly higher precision than astronomical sources, and already constrain the calibration to a few percent in amplitude and a few degrees in phase. In this sense, our astronomical calibrators only corroborate existing calibration measurements. Nonetheless, astrophysical calibration may become an important corroboration of existing calibration methods, providing a completely independent constraint of potential systematics.
摘要: The waveform of a compact binary coalescence is predicted by general relativity. It is therefore possible to directly constrain the response of a gravitational-wave (GW) detector by analyzing a signal's observed amplitude and phase evolution as a function of frequency. GW signals alone constrain the relative amplitude and phase between different frequencies within the same detector and between different detectors. We analyze GW170817's ability to calibrate the LIGO/Virgo detectors, finding a relative amplitude calibration precision of approximately $\pm20\%$ and relative phase precision of $\pm15^\circ$ (1-$\sigma$ uncertainty) between the LIGO Hanford and Livingston detectors. Incorporating additional information about the distance and inclination of the source from electromagnetic observations, the relative amplitude of the LIGO detectors can be tightened to $\sim\pm15\%$. We investigate the ability of future events to improve astronomical calibration. By simulating the cumulative uncertainties from an ensemble of detections, we find that with several hundred events with electromagnetic counterparts, or several thousand events without counterparts, we reach percent-level astronomical calibration. This corresponds to $\sim$5-10 years of operation at advanced LIGO and Virgo design sensitivity. It is to be emphasized that direct {\em in-situ}\/ measurements of detector calibration provide significantly higher precision than astronomical sources, and already constrain the calibration to a few percent in amplitude and a few degrees in phase. In this sense, our astronomical calibrators only corroborate existing calibration measurements. Nonetheless, astrophysical calibration may become an important corroboration of existing calibration methods, providing a completely independent constraint of potential systematics.
评论: 12页,6个图
主题: 天体物理学的仪器与方法 (astro-ph.IM) ; 广义相对论与量子宇宙学 (gr-qc)
引用方式: arXiv:1902.08076 [astro-ph.IM]
  (或者 arXiv:1902.08076v1 [astro-ph.IM] 对于此版本)
  https://doi.org/10.48550/arXiv.1902.08076
通过 DataCite 发表的 arXiv DOI
相关 DOI: https://doi.org/10.1088/1361-6382/ab2142
链接到相关资源的 DOI

提交历史

来自: Reed Essick [查看电子邮件]
[v1] 星期四, 2019 年 2 月 21 日 14:44:48 UTC (2,966 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
astro-ph.IM
< 上一篇   |   下一篇 >
新的 | 最近的 | 2019-02
切换浏览方式为:
astro-ph
gr-qc

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号