计算机科学 > 机器学习
[提交于 2019年10月16日
]
标题: 一种高效的分布式学习双残差压缩算法
标题: A Double Residual Compression Algorithm for Efficient Distributed Learning
摘要: Large-scale machine learning models are often trained by parallel stochastic gradient descent algorithms. However, the communication cost of gradient aggregation and model synchronization between the master and worker nodes becomes the major obstacle for efficient learning as the number of workers and the dimension of the model increase. In this paper, we propose DORE, a DOuble REsidual compression stochastic gradient descent algorithm, to reduce over $95\%$ of the overall communication such that the obstacle can be immensely mitigated. Our theoretical analyses demonstrate that the proposed strategy has superior convergence properties for both strongly convex and nonconvex objective functions. The experimental results validate that DORE achieves the best communication efficiency while maintaining similar model accuracy and convergence speed in comparison with start-of-the-art baselines.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.