数学 > 组合数学
[提交于 2020年12月1日
]
标题: 关于令牌图的拉普拉斯谱
标题: On the Laplacian spectra of token graphs
摘要: We study the Laplacian spectrum of token graphs, also called symmetric powers of graphs. The $k$-token graph $F_k(G)$ of a graph $G$ is the graph whose vertices are the $k$-subsets of vertices from $G$, two of which being adjacent whenever their symmetric difference is a pair of adjacent vertices in $G$. In this paper, we give a relationship between the Laplacian spectra of any two token graphs of a given graph. 特别是,我们证明对于任何整数$h$和$k$使得$1\le h\le k\le \frac{n}{2}$,图$F_h(G)$的拉普拉斯谱包含在图$F_k(G)$的拉普拉斯谱中。我们还证明双奇图和双约翰逊图可以分别作为完全图$K_n$和星形图$S_{n}=K_{1,n-1}$的标记图得到。 Besides, we obtain a relationship between the spectra of the $k$-token graph of $G$ and the $k$-token graph of its complement $\overline{G}$. This generalizes a well-known property for Laplacian eigenvalues of graphs to token graphs. Finally, the double odd graphs and doubled Johnson graphs provide two infinite families, together with some others, in which the algebraic connectivities of the original graph and its token graph coincide. Moreover, we conjecture that this is the case for any graph $G$ and its token graph.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.