Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > quant-ph > arXiv:2205.07143

帮助 | 高级搜索

量子物理

arXiv:2205.07143 (quant-ph)
[提交于 2022年5月14日 (v1) ,最后修订 2022年10月9日 (此版本, v2)]

标题: 纠缠与量子关联度量的最小距离原理

标题: Entanglement and Quantum Correlation Measures from a Minimum Distance Principle

Authors:Arthur Vesperini, Ghofrane Bel-Hadj-Aissa, Roberto Franzosi
摘要: Entanglement, and quantum correlation, are precious resources for quantum technologies implementation based on quantum information science, such as, for instance, quantum communication, quantum computing, and quantum interferometry. Nevertheless, to our best knowledge, a directly computable measure for the entanglement of multipartite mixed-states is still lacking. In this work, {\it i)} we derive from a minimum distance principle, an explicit measure able to quantify the degree of quantum correlation for pure or mixed multipartite states; {\it ii)} through a regularization process of the density matrix, we derive an entanglement measure from such quantum correlation measure; {\it iii)} we prove that our entanglement measure is \textit{忠实的} in the sense that it vanishes only on the set of separable states. Then, a comparison of the proposed measures, of quantum correlation and entanglement, allows one to distinguish between quantum correlation detached from entanglement and the one induced by entanglement, hence to define the set of separable but non-classical states. Since all the relevant quantities in our approach, descend from the geometry structure of the projective Hilbert space, the proposed method is of general application. Finally, we apply the derived measures as an example to a general Bell diagonal state and to the Werner states, for which our regularization procedure is easily tractable.
摘要: Entanglement, and quantum correlation, are precious resources for quantum technologies implementation based on quantum information science, such as, for instance, quantum communication, quantum computing, and quantum interferometry. Nevertheless, to our best knowledge, a directly computable measure for the entanglement of multipartite mixed-states is still lacking. In this work, {\it i)} we derive from a minimum distance principle, an explicit measure able to quantify the degree of quantum correlation for pure or mixed multipartite states; {\it ii)} through a regularization process of the density matrix, we derive an entanglement measure from such quantum correlation measure; {\it iii)} we prove that our entanglement measure is \textit{faithful} in the sense that it vanishes only on the set of separable states. Then, a comparison of the proposed measures, of quantum correlation and entanglement, allows one to distinguish between quantum correlation detached from entanglement and the one induced by entanglement, hence to define the set of separable but non-classical states. Since all the relevant quantities in our approach, descend from the geometry structure of the projective Hilbert space, the proposed method is of general application. Finally, we apply the derived measures as an example to a general Bell diagonal state and to the Werner states, for which our regularization procedure is easily tractable.
评论: 7页,3个图
主题: 量子物理 (quant-ph) ; 数学物理 (math-ph)
引用方式: arXiv:2205.07143 [quant-ph]
  (或者 arXiv:2205.07143v2 [quant-ph] 对于此版本)
  https://doi.org/10.48550/arXiv.2205.07143
通过 DataCite 发表的 arXiv DOI
期刊参考: Scientific Reports (2023) 13:2852
相关 DOI: https://doi.org/10.1038/s41598-023-29438-7
链接到相关资源的 DOI

提交历史

来自: Roberto Franzosi [查看电子邮件]
[v1] 星期六, 2022 年 5 月 14 日 22:18:48 UTC (140 KB)
[v2] 星期日, 2022 年 10 月 9 日 16:04:23 UTC (142 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.MP
< 上一篇   |   下一篇 >
新的 | 最近的 | 2022-05
切换浏览方式为:
math
math-ph
quant-ph

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号