Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2306.09899v1

帮助 | 高级搜索

数学 > 群论

arXiv:2306.09899v1 (math)
[提交于 2023年6月16日 (此版本) , 最新版本 2023年10月16日 (v2) ]

标题: TO_BE_TRANSLATED: Approximate lattices: structure in linear groups, definition(s) and beyond

标题: Approximate lattices: structure in linear groups, definition(s) and beyond

Authors:Simon Machado
摘要: TO_BE_TRANSLATED: Approximate lattices are aperiodic generalisations of lattices of locally compact groups first studied in seminal work of Yves Meyer. They are uniformly discrete approximate groups (i.e. symmetric subsets stable under multiplication up to a finite error) of locally compact groups that have finite co-volume. Meyer showed that approximate lattices of Euclidean spaces (a.k.a. Meyer sets) come from lattices in higher-dimensional Euclidean spaces via the cut-and-project construction. A fundamental challenge consists in extending Meyer's theorem beyond Euclidean spaces. Our main result provides a complete structure theorem for approximate lattices in linear algebraic groups over local fields and their finite products, in particular generalising Meyer's theorem. Along the way, we extend a theorem of Lubotzky--Mozes--Raghunathan to approximate lattices, we show an arithmeticity statement in perfect groups with a higher-rank condition and build rank one approximate lattices with surprising behaviour. Our work also unveils the role plaid by a novel notion of cohomology for approximate subgroups. The structure of approximate lattices in linear algebraic groups reduces to a cohomology class which we can then prove vanishes in higher-rank building upon a method of Burger--Monod. Beyond approximate lattices, this cohomology is key to prove uniqueness of the quasi-models of approximate groups introduced by Hrushovski. We take this opportunity to collect in one place and one common language the recent advances in the theory of approximate lattices and infinite approximate subgroups of locally compact groups. This work begins with an introduction recording definitions and surveying previous results. In this first part we also tackle the main issue concerning the definition(s) of approximate lattices: there are six competing definitions and little is known of how they relate to one another.
摘要: Approximate lattices are aperiodic generalisations of lattices of locally compact groups first studied in seminal work of Yves Meyer. They are uniformly discrete approximate groups (i.e. symmetric subsets stable under multiplication up to a finite error) of locally compact groups that have finite co-volume. Meyer showed that approximate lattices of Euclidean spaces (a.k.a. Meyer sets) come from lattices in higher-dimensional Euclidean spaces via the cut-and-project construction. A fundamental challenge consists in extending Meyer's theorem beyond Euclidean spaces. Our main result provides a complete structure theorem for approximate lattices in linear algebraic groups over local fields and their finite products, in particular generalising Meyer's theorem. Along the way, we extend a theorem of Lubotzky--Mozes--Raghunathan to approximate lattices, we show an arithmeticity statement in perfect groups with a higher-rank condition and build rank one approximate lattices with surprising behaviour. Our work also unveils the role plaid by a novel notion of cohomology for approximate subgroups. The structure of approximate lattices in linear algebraic groups reduces to a cohomology class which we can then prove vanishes in higher-rank building upon a method of Burger--Monod. Beyond approximate lattices, this cohomology is key to prove uniqueness of the quasi-models of approximate groups introduced by Hrushovski. We take this opportunity to collect in one place and one common language the recent advances in the theory of approximate lattices and infinite approximate subgroups of locally compact groups. This work begins with an introduction recording definitions and surveying previous results. In this first part we also tackle the main issue concerning the definition(s) of approximate lattices: there are six competing definitions and little is known of how they relate to one another.
评论: TO_BE_TRANSLATED: 140 pages; comments welcome!
主题: 群论 (math.GR)
引用方式: arXiv:2306.09899 [math.GR]
  (或者 arXiv:2306.09899v1 [math.GR] 对于此版本)
  https://doi.org/10.48550/arXiv.2306.09899
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Simon Machado [查看电子邮件]
[v1] 星期五, 2023 年 6 月 16 日 15:21:52 UTC (151 KB)
[v2] 星期一, 2023 年 10 月 16 日 09:51:59 UTC (62 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • 其他格式
查看许可
当前浏览上下文:
math.GR
< 上一篇   |   下一篇 >
新的 | 最近的 | 2023-06
切换浏览方式为:
math

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号