Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > econ > arXiv:2307.06174v1

帮助 | 高级搜索

经济学 > 计量经济学

arXiv:2307.06174v1 (econ)
[提交于 2023年7月12日 ]

标题: 多个处理模型下离散变化中的识别

标题: Identification in Multiple Treatment Models under Discrete Variation

Authors:Vishal Kamat, Samuel Norris, Matthew Pecenco
摘要: 我们开发了一种方法,用于在具有离散值工具变量的多处理模型中学习处理效应。我们允许进入处理的选取由一个一般的阈值交叉模型类来决定,该模型允许多维未观察到的异质性。在对未观察到的异质性的分布施加半参数限制的情况下,我们展示了如何通过一系列线性规划来计算多个处理效应参数的紧致边界,当其背后的边际处理响应函数保持非参数或被进一步参数化时。
摘要: We develop a method to learn about treatment effects in multiple treatment models with discrete-valued instruments. We allow selection into treatment to be governed by a general class of threshold crossing models that permits multidimensional unobserved heterogeneity. Under a semi-parametric restriction on the distribution of unobserved heterogeneity, we show how a sequence of linear programs can be used to compute sharp bounds for a number of treatment effect parameters when the marginal treatment response functions underlying them remain nonparametric or are additionally parameterized.
主题: 计量经济学 (econ.EM)
引用方式: arXiv:2307.06174 [econ.EM]
  (或者 arXiv:2307.06174v1 [econ.EM] 对于此版本)
  https://doi.org/10.48550/arXiv.2307.06174
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Vishal Kamat [查看电子邮件]
[v1] 星期三, 2023 年 7 月 12 日 13:59:35 UTC (130 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
econ.EM
< 上一篇   |   下一篇 >
新的 | 最近的 | 2023-07
切换浏览方式为:
econ

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号