Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > hep-th > arXiv:2407.03866v1

帮助 | 高级搜索

高能物理 - 理论

arXiv:2407.03866v1 (hep-th)
[提交于 2024年7月4日 ]

标题: 关于Krylov复杂度

标题: On Krylov Complexity

Authors:A. S치nchez-Garrido
摘要: 本论文探讨了Krylov复杂性作为量子混沌的探测器以及全息复杂性的候选者这一概念。 第一部分致力于介绍在此领域进行研究所需的基本概念。 具体而言,提供了对Lanczos算法的广泛介绍,包括其性质和相关代数结构,以及与其实际实现相关的技术细节。 随后,提供了关于Krylov复杂性及其与混沌和全息理论关系的开创性参考文献和主要争论的概述。 本文第一部分的内容结合了综述材料与原创分析,这些分析旨在对文献中的结果进行背景说明、比较和批评,或是基于导致本论文所依据的出版物的研究成果。 这些研究项目是手稿第二部分的主题。 在这些研究中,开发了在有限多体系统中高效实现Lanczos算法的方法,使得能够数值计算如SYK或XXZ自旋链模型的Krylov复杂性,达到系统尺寸指数级大的时间尺度。 观察到,在SYK中,算子Krylov复杂性轮廓与全息期望一致,而XXZ等可积模型的复杂性则受到所谓的Kry洛空间中一种新的局域化效应的影响,从而阻碍了其增长。 最后,建立了双缩放SYK模型低能区无限温度热场双态的Krylov复杂性与JT引力理论中体长度之间的精确解析对应关系。
摘要: This Thesis explores the notion of Krylov complexity as a probe of quantum chaos and as a candidate for holographic complexity. The first Part is devoted to presenting the fundamental notions required to conduct research in this area. Namely, an extensive introduction to the Lanczos algorithm, its properties and associated algebraic structures, as well as technical details related to its practical implementation, is given. Subsequently, an overview of the seminal references and the main debates regarding Krylov complexity and its relation to chaos and holography is provided. The text throughout this first Part combines review material with original analyses which either intend to contextualize, compare and criticize results in the literature, or are the fruit of the investigations leading to the publications on which this Thesis is based. These research projects are the subject of the second Part of the manuscript. In them, methods for the efficient implementation of the Lanczos algorithm in finite many-body systems were developed, allowing to compute numerically the Krylov complexity of models like SYK or the XXZ spin chain up to time scales exponentially large in system size. It was observed that the operator Krylov complexity profile in SYK, a paradigmatic low-dimensional chaotic system with a holographic dual, agrees with holographic expectations, while in the case of integrable models like XXZ complexity is affected by a novel localization effect in the so-called Krylov space which hinders its growth. Finally, an exact, analytical, correspondence between the Krylov complexity of the infinite-temperature thermofield double state in the low-energy regime of the double-scaled SYK model and bulk length in the theory of JT gravity is established.
评论: 博士论文,331页
主题: 高能物理 - 理论 (hep-th) ; 强关联电子 (cond-mat.str-el); 量子物理 (quant-ph)
引用方式: arXiv:2407.03866 [hep-th]
  (或者 arXiv:2407.03866v1 [hep-th] 对于此版本)
  https://doi.org/10.48550/arXiv.2407.03866
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Adri치n S치nchez-Garrido [查看电子邮件]
[v1] 星期四, 2024 年 7 月 4 日 11:57:29 UTC (24,527 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
hep-th
< 上一篇   |   下一篇 >
新的 | 最近的 | 2024-07
切换浏览方式为:
cond-mat
cond-mat.str-el
quant-ph

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号