Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cond-mat > arXiv:2411.05600v1

帮助 | 高级搜索

凝聚态物理 > 材料科学

arXiv:2411.05600v1 (cond-mat)
[提交于 2024年11月8日 ]

标题: 通过减弱银$_{6}$八面体中的银-银键实现固有类玻璃的热输运

标题: Realizing Intrinsically Glass-like Thermal Transport via Weakening the Ag-Ag Bonds in Ag$_{6}$ Octahedra

Authors:Xingchen Shen, Zhonghao Xia, Jun Zhou, Yuling Huang, Yali Yang, Jiangang He, Yi Xia
摘要: Crystals exhibiting glass-like and low lattice thermal conductivity ($\kappa_{\rm L}$) are not only scientifically intriguing but also practically valuable in various applications, including thermal barrier coatings, thermoelectric energy conversion, and thermal management. However, such unusual $\kappa_{\rm L}$ are typically observed only in compounds containing heavy elements, with large unit cells, or at high temperatures, primarily due to significant anharmonicity. In this study, we utilize chemical bonding principles to weaken the Ag-Ag bonds within the Ag$_6$ octahedron by introducing a ligand in the bridge position. Additionally, the weak Ag-chalcogen bonds, arising from fully filled $p$-$d$ antibonding orbitals, provide an avenue to further enhance lattice anharmonicity. We propose the incorporation of a chalcogen anion as a bridge ligand to promote phonon rattling in Ag$_6$-octahedron-based compounds. 根据这种设计策略,我们理论上识别了五种基于Ag$_6$八面体的化合物,$A$Ag$_3X_2$ ($A$ = Li, Na, and K; $X$ = S and Se),这些化合物具有较低的平均原子质量并表现出异常强烈的四声子散射。 因此,这些化合物在宽温度范围内表现出超低的热导率(0.3 $\sim$ 0.6 Wm$^{-1}$K$^{-1}$),且温度依赖性最小(T$^{-0.1}$)。 实验验证确认,在200至550 K的温度范围内,NaAg$_3$S$_2$的$\kappa_{\rm L}$为0.45 Wm$^{-1}$K$^{-1}$。我们的结果明确表明,弱化学键在设计具有玻璃样$\kappa_{\rm L}$的化合物中起着关键作用,突显了化学键工程在实现所需热传导特性方面的有效性。
摘要: Crystals exhibiting glass-like and low lattice thermal conductivity ($\kappa_{\rm L}$) are not only scientifically intriguing but also practically valuable in various applications, including thermal barrier coatings, thermoelectric energy conversion, and thermal management. However, such unusual $\kappa_{\rm L}$ are typically observed only in compounds containing heavy elements, with large unit cells, or at high temperatures, primarily due to significant anharmonicity. In this study, we utilize chemical bonding principles to weaken the Ag-Ag bonds within the Ag$_6$ octahedron by introducing a ligand in the bridge position. Additionally, the weak Ag-chalcogen bonds, arising from fully filled $p$-$d$ antibonding orbitals, provide an avenue to further enhance lattice anharmonicity. We propose the incorporation of a chalcogen anion as a bridge ligand to promote phonon rattling in Ag$_6$-octahedron-based compounds. Guided by this design strategy, we theoretically identified five Ag$_6$ octahedron-based compounds, $A$Ag$_3X_2$ ($A$ = Li, Na, and K; $X$ = S and Se), which are characterized by low average atomic masses and exhibit exceptionally strong four-phonon scattering. Consequently, these compounds demonstrate ultralow thermal conductivities (0.3 $\sim$ 0.6 Wm$^{-1}$K$^{-1}$) with minimal temperature dependence (T$^{-0.1}$) across a wide temperature range. Experimental validation confirmed that the $\kappa_{\rm L}$ of NaAg$_3$S$_2$ is 0.45 Wm$^{-1}$K$^{-1}$ within the temperature range of 200 to 550 K. Our results clearly demonstrate that weak chemical bonding plays a crucial role in designing compounds with glass-like $\kappa_{\rm L}$, highlighting the effectiveness of chemical bonding engineering in achieving desired thermal transport properties.
主题: 材料科学 (cond-mat.mtrl-sci)
引用方式: arXiv:2411.05600 [cond-mat.mtrl-sci]
  (或者 arXiv:2411.05600v1 [cond-mat.mtrl-sci] 对于此版本)
  https://doi.org/10.48550/arXiv.2411.05600
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Jiangang He [查看电子邮件]
[v1] 星期五, 2024 年 11 月 8 日 14:42:14 UTC (8,806 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
cond-mat.mtrl-sci
< 上一篇   |   下一篇 >
新的 | 最近的 | 2024-11
切换浏览方式为:
cond-mat

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号