Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > physics > arXiv:2501.14476v1

帮助 | 高级搜索

物理学 > 物理与社会

arXiv:2501.14476v1 (physics)
[提交于 2025年1月24日 ]

标题: 避免变量阶马尔可夫模型中的过拟合:一种交叉验证方法

标题: Avoiding Overfitting in Variable-Order Markov Models: a Cross-Validation Approach

Authors:Valeria Secchini, Javier Garcia-Bernardo, Petr Janský
摘要: Higher$\text{-}$order Markov chain models are widely used to represent agent transitions in dynamic systems, such as passengers in transport networks. They capture transitions in complex systems by considering not only the current state but also the path of previously visited states. For example, the likelihood of train passengers traveling from Paris (current state) to Rome could increase significantly if their journey originated in Italy (prior state). Although this approach provides a more faithful representation of the system than first$\text{-}$order models, we find that commonly used methods$-$relying on Kullback$\text{-}$Leibler divergence$-$frequently overfit the data, mistaking fluctuations for higher$\text{-}$order dependencies and undermining forecasts and resource allocation. Here, we introduce DIVOP (Detection of Informative Variable$\text{-}$Order Paths), an algorithm that employs cross$\text{-}$validation to robustly distinguish meaningful higher$\text{-}$order dependencies from noise. In both synthetic and real$\text{-}$world datasets, DIVOP outperforms two state$\text{-}$of$\text{-}$the$\text{-}$art algorithms by achieving higher precision, recall, and sparser representations of the underlying dynamics. When applied to global corporate ownership data, DIVOP reveals that tax havens appear in 82$\%$ of all significant higher$\text{-}$order dependencies, underscoring their outsized influence in corporate networks. By mitigating overfitting, DIVOP enables more reliable multi$\text{-}$step predictions and decision$\text{-}$making, paving the way toward deeper insights into the hidden structures that drive modern interconnected systems.
摘要: Higher$\text{-}$order Markov chain models are widely used to represent agent transitions in dynamic systems, such as passengers in transport networks. They capture transitions in complex systems by considering not only the current state but also the path of previously visited states. For example, the likelihood of train passengers traveling from Paris (current state) to Rome could increase significantly if their journey originated in Italy (prior state). Although this approach provides a more faithful representation of the system than first$\text{-}$order models, we find that commonly used methods$-$relying on Kullback$\text{-}$Leibler divergence$-$frequently overfit the data, mistaking fluctuations for higher$\text{-}$order dependencies and undermining forecasts and resource allocation. Here, we introduce DIVOP (Detection of Informative Variable$\text{-}$Order Paths), an algorithm that employs cross$\text{-}$validation to robustly distinguish meaningful higher$\text{-}$order dependencies from noise. In both synthetic and real$\text{-}$world datasets, DIVOP outperforms two state$\text{-}$of$\text{-}$the$\text{-}$art algorithms by achieving higher precision, recall, and sparser representations of the underlying dynamics. When applied to global corporate ownership data, DIVOP reveals that tax havens appear in 82$\%$ of all significant higher$\text{-}$order dependencies, underscoring their outsized influence in corporate networks. By mitigating overfitting, DIVOP enables more reliable multi$\text{-}$step predictions and decision$\text{-}$making, paving the way toward deeper insights into the hidden structures that drive modern interconnected systems.
主题: 物理与社会 (physics.soc-ph) ; 社会与信息网络 (cs.SI); 一般经济学 (econ.GN)
引用方式: arXiv:2501.14476 [physics.soc-ph]
  (或者 arXiv:2501.14476v1 [physics.soc-ph] 对于此版本)
  https://doi.org/10.48550/arXiv.2501.14476
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Valeria Secchini [查看电子邮件]
[v1] 星期五, 2025 年 1 月 24 日 13:18:11 UTC (11,651 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
physics.soc-ph
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-01
切换浏览方式为:
cs
cs.SI
econ
econ.GN
physics
q-fin
q-fin.EC

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号