Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cond-mat > arXiv:2504.07180v1

帮助 | 高级搜索

凝聚态物理 > 强关联电子

arXiv:2504.07180v1 (cond-mat)
[提交于 2025年4月9日 (此版本) , 最新版本 2025年5月30日 (v2) ]

标题: 固定点在二维费米子Pomeranchuk/Stoner不稳定性处通过场论RG从吸引性到排斥性的稳定性切换

标题: Fixed Point Stability Switches from Attractive to Repulsive at 2d Pomeranchuk/Stoner Instabilities via Field-Theoretical RG

Authors:Han Ma
摘要: We study an interacting two-flavor fermionic system via field-theoretical functional renormalization group (RG). Each flavor, labeled by $\pm$, has a dispersion of $E^{\pm}=c k^{2\alpha}-\mu^\pm$ with tunable real exponent $\alpha>0$. The effective theory is parametrized by intra-flavor and inter-flavor interactions, preserving global U(1) $\times$ U(1) symmetry, which can be enhanced to U(2). The U(2) symmetric system has a Fermi liquid phase and two possible instabilities, leading to spontaneous spatial rotational or flavor symmetry breaking, known as the Pomeranchuk and Stoner instabilities, respectively. The key discovery of this work is the following. The Stoner instability possesses an RG fixed point that preserves the U(2) symmetry. For $\alpha<1$, this fixed point is attractive, indicating a continuous transition. Conversely, for $\alpha>1$, the fixed point becomes repulsive, and without fine-tuning, there is runaway RG flow, resulting in a discontinuous transition. The U(1) $\times$ U(1) symmetric system, with $\mu^+\neq \mu^-$, exhibits richer physics. This system have two Pomeranchuk instabilities. At one of them, a non-trivial RG fixed point switches its nature from attractive to repulsive as $\alpha$ increases across $1$. Notably, the runaway flow at $\alpha>1$ results in the depletion of a Fermi surface at the transition. Collective modes in these Fermi liquids are also investigated. A universal Fermi surface deformation ratio $\delta\mu^+/\delta\mu^-$ is predicted for $\alpha<1$ at the instability as a continuous transition, which can be observed experimentally.
摘要: We study an interacting two-flavor fermionic system via field-theoretical functional renormalization group (RG). Each flavor, labeled by $\pm$, has a dispersion of $E^{\pm}=c k^{2\alpha}-\mu^\pm$ with tunable real exponent $\alpha>0$. The effective theory is parametrized by intra-flavor and inter-flavor interactions, preserving global U(1) $\times$ U(1) symmetry, which can be enhanced to U(2). The U(2) symmetric system has a Fermi liquid phase and two possible instabilities, leading to spontaneous spatial rotational or flavor symmetry breaking, known as the Pomeranchuk and Stoner instabilities, respectively. The key discovery of this work is the following. The Stoner instability possesses an RG fixed point that preserves the U(2) symmetry. For $\alpha<1$, this fixed point is attractive, indicating a continuous transition. Conversely, for $\alpha>1$, the fixed point becomes repulsive, and without fine-tuning, there is runaway RG flow, resulting in a discontinuous transition. The U(1) $\times$ U(1) symmetric system, with $\mu^+\neq \mu^-$, exhibits richer physics. This system have two Pomeranchuk instabilities. At one of them, a non-trivial RG fixed point switches its nature from attractive to repulsive as $\alpha$ increases across $1$. Notably, the runaway flow at $\alpha>1$ results in the depletion of a Fermi surface at the transition. Collective modes in these Fermi liquids are also investigated. A universal Fermi surface deformation ratio $\delta\mu^+/\delta\mu^-$ is predicted for $\alpha<1$ at the instability as a continuous transition, which can be observed experimentally.
评论: 21+7页
主题: 强关联电子 (cond-mat.str-el) ; 高能物理 - 理论 (hep-th)
引用方式: arXiv:2504.07180 [cond-mat.str-el]
  (或者 arXiv:2504.07180v1 [cond-mat.str-el] 对于此版本)
  https://doi.org/10.48550/arXiv.2504.07180
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Han Ma [查看电子邮件]
[v1] 星期三, 2025 年 4 月 9 日 18:00:09 UTC (986 KB)
[v2] 星期五, 2025 年 5 月 30 日 18:27:56 UTC (987 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • 其他格式
查看许可
当前浏览上下文:
cond-mat.str-el
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-04
切换浏览方式为:
cond-mat
hep-th

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号