Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cond-mat > arXiv:2507.12934v1

帮助 | 高级搜索

凝聚态物理 > 软凝聚态物理

arXiv:2507.12934v1 (cond-mat)
[提交于 2025年7月17日 ]

标题: 机器学习带电胶体在原始1:1电解质中的多体势能

标题: Machine learning many-body potentials for charged colloids in primitive 1:1 electrolytes

Authors:Thijs ter Rele, Gerardo Campos-Villalobos, René van Roij, Marjolein Dijkstra
摘要: 带电粒子在电解质中的有效相互作用最常使用Derjaguin-Landau-Verwey-Overbeek(DLVO)势来建模,在该模型中,悬浮液中的离子在平均场层面上被粗粒化处理。 然而,一些实验表明该理论存在不足,因为在强库仑耦合区域(例如低温度、低介电常数、高离子价态、高表面电荷)中,围绕胶体的离子分布由非平凡的相关性所支配。 通过在这些胶体悬浮液的模拟中显式包含离子可以获得见解,尽管直接模拟高度带电球体的分散体系在计算上是具有挑战性的。 为了克服缓慢的平衡问题,我们采用机器学习(ML)框架生成准确描述有效胶体相互作用的ML势。 这些ML势使得快速模拟成为可能,并使得在悬浮液中对带电胶体的大规模模拟成为可能,从而为系统研究它们的相行为(特别是气液和流固共存)提供了可能性。
摘要: Effective interactions between charged particles dispersed in an electrolyte are most commonly modeled using the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential, where the ions in the suspension are coarse-grained out at mean-field level. However, several experiments point to shortcomings of this theory, as the distribution of ions surrounding colloids is governed by nontrivial correlations in regimes of strong Coulomb coupling (e.g. low temperature, low dielectric constant, high ion valency, high surface charge). Insight can be gained by explicitly including the ions in simulations of these colloidal suspensions, even though direct simulations of dispersions of highly charged spheres are computationally demanding. To circumvent slow equilibration, we employ a machine-learning (ML) framework to generate ML potentials that accurately describe the effective colloid interactions. These ML potentials enable fast simulations and make large-scale simulations of charged colloids in suspension possible, opening the possibility for a systematic study of their phase behaviour, in particular gas-liquid and fluid-solid coexistence.
评论: 13页,7图
主题: 软凝聚态物理 (cond-mat.soft)
引用方式: arXiv:2507.12934 [cond-mat.soft]
  (或者 arXiv:2507.12934v1 [cond-mat.soft] 对于此版本)
  https://doi.org/10.48550/arXiv.2507.12934
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Thijs Ter Rele [查看电子邮件]
[v1] 星期四, 2025 年 7 月 17 日 09:19:23 UTC (1,064 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
cond-mat.soft
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-07
切换浏览方式为:
cond-mat

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号