Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cond-mat > arXiv:2508.00787v1

帮助 | 高级搜索

凝聚态物理 > 统计力学

arXiv:2508.00787v1 (cond-mat)
[提交于 2025年8月1日 ]

标题: 关于配置空间统计几何的临界性

标题: On the criticality of the configuration-space statistical geometry

Authors:Yu-Jing Liu, Wen-Yu Su, Yong-Feng Yang, Nvsen Ma, Chen Cheng
摘要: While phases and phase transitions are conventionally described by local order parameters in real space, we present a unified framework characterizing the phase transition through the geometry of configuration space defined by the statistics of pairwise distances $r_H$ between configurations. Focusing on the concrete example of Ising spins, we establish crucial analytical links between this geometry and fundamental real-space observables, i.e., the magnetization and two-point spin correlation functions. This link unveils the universal scaling law in the configuration space: the standard deviation of the normalized distances exhibits universal criticality as $\sqrt{\mathrm{Var}(r_H)}\sim L^{-2\beta/\nu}$, provided that the system possesses zero magnetization and satisfies $4\beta/\nu < d$. Numerical stochastic series expansion quantum Monte Carlo simulations on the transverse-field Ising model (TFIM) validate this scaling law: (i) It is perfectly validated in the one-dimensional TFIM, where all theoretical criteria are satisfied; (ii) Its robustness is confirmed in the two-dimensional TFIM, where, despite the theoretical applicability condition being at its marginal limit, our method robustly captures the effective scaling dominated by physical correlations; (iii) The method's specificity is demonstrated via a critical control experiment in the orthogonal $\hat{\sigma}^x$ basis, where no long-range order exists, correctly reverts to a non-critical background scaling. Moreover, the distribution probability $P(r_H)$ parameterized by the transverse field $h$ forms a one-dimensional manifold. Information-geometric analyses, particularly the Fisher information defined on this manifold, successfully pinpoint the TFIM phase transition, regardless of the measuring basis.
摘要: While phases and phase transitions are conventionally described by local order parameters in real space, we present a unified framework characterizing the phase transition through the geometry of configuration space defined by the statistics of pairwise distances $r_H$ between configurations. Focusing on the concrete example of Ising spins, we establish crucial analytical links between this geometry and fundamental real-space observables, i.e., the magnetization and two-point spin correlation functions. This link unveils the universal scaling law in the configuration space: the standard deviation of the normalized distances exhibits universal criticality as $\sqrt{\mathrm{Var}(r_H)}\sim L^{-2\beta/\nu}$, provided that the system possesses zero magnetization and satisfies $4\beta/\nu < d$. Numerical stochastic series expansion quantum Monte Carlo simulations on the transverse-field Ising model (TFIM) validate this scaling law: (i) It is perfectly validated in the one-dimensional TFIM, where all theoretical criteria are satisfied; (ii) Its robustness is confirmed in the two-dimensional TFIM, where, despite the theoretical applicability condition being at its marginal limit, our method robustly captures the effective scaling dominated by physical correlations; (iii) The method's specificity is demonstrated via a critical control experiment in the orthogonal $\hat{\sigma}^x$ basis, where no long-range order exists, correctly reverts to a non-critical background scaling. Moreover, the distribution probability $P(r_H)$ parameterized by the transverse field $h$ forms a one-dimensional manifold. Information-geometric analyses, particularly the Fisher information defined on this manifold, successfully pinpoint the TFIM phase transition, regardless of the measuring basis.
评论: 12页,10图
主题: 统计力学 (cond-mat.stat-mech)
引用方式: arXiv:2508.00787 [cond-mat.stat-mech]
  (或者 arXiv:2508.00787v1 [cond-mat.stat-mech] 对于此版本)
  https://doi.org/10.48550/arXiv.2508.00787
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Yu-Jing Liu [查看电子邮件]
[v1] 星期五, 2025 年 8 月 1 日 17:11:07 UTC (1,865 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
cond-mat.stat-mech
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-08
切换浏览方式为:
cond-mat

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号