凝聚态物理 > 统计力学
[提交于 2025年8月1日
]
标题: 关于配置空间统计几何的临界性
标题: On the criticality of the configuration-space statistical geometry
摘要: While phases and phase transitions are conventionally described by local order parameters in real space, we present a unified framework characterizing the phase transition through the geometry of configuration space defined by the statistics of pairwise distances $r_H$ between configurations. Focusing on the concrete example of Ising spins, we establish crucial analytical links between this geometry and fundamental real-space observables, i.e., the magnetization and two-point spin correlation functions. This link unveils the universal scaling law in the configuration space: the standard deviation of the normalized distances exhibits universal criticality as $\sqrt{\mathrm{Var}(r_H)}\sim L^{-2\beta/\nu}$, provided that the system possesses zero magnetization and satisfies $4\beta/\nu < d$. Numerical stochastic series expansion quantum Monte Carlo simulations on the transverse-field Ising model (TFIM) validate this scaling law: (i) It is perfectly validated in the one-dimensional TFIM, where all theoretical criteria are satisfied; (ii) Its robustness is confirmed in the two-dimensional TFIM, where, despite the theoretical applicability condition being at its marginal limit, our method robustly captures the effective scaling dominated by physical correlations; (iii) The method's specificity is demonstrated via a critical control experiment in the orthogonal $\hat{\sigma}^x$ basis, where no long-range order exists, correctly reverts to a non-critical background scaling. Moreover, the distribution probability $P(r_H)$ parameterized by the transverse field $h$ forms a one-dimensional manifold. Information-geometric analyses, particularly the Fisher information defined on this manifold, successfully pinpoint the TFIM phase transition, regardless of the measuring basis.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.