Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cond-mat > arXiv:2510.02256v2

帮助 | 高级搜索

凝聚态物理 > 强关联电子

arXiv:2510.02256v2 (cond-mat)
[提交于 2025年10月2日 (v1) ,最后修订 2025年10月9日 (此版本, v2)]

标题: 开放量子自旋液体中纠缠的演化:突然耦合到耗散玻色环境时其真实多体负性的时间演化

标题: Fate of entanglement in open quantum spin liquid: Time evolution of its genuine multipartite negativity upon sudden coupling to a dissipative bosonic environment

Authors:Federico Garcia-Gaitan, Branislav K. Nikolic
摘要: Topological properties of many-body entanglement in quantum spin liquids (QSLs), persisting at arbitrarily long distances, have been intensely explored over the past two decades, but mostly for QSLs viewed as {\em 关闭} quantum systems. However, in experiments and potential quantum computing applications, candidate materials for this exotic phase of quantum matter will always interact with a dissipative environment, such as the one generated by bosonic quasiparticles in solids at finite temperature. Here we investigate the spatial structure and stability of entanglement in the Kitaev model of QSL made {\em 打开} by sudden coupling to an infinite bosonic bath of Caldeira-Leggett type and time-evolved using the Lindblad quantum master equation in the Markovian regime (i.e., for weak coupling) or tensor network methods for open quantum systems in the non-Markovian regime (i.e., for strong coupling). From the time-evolved density matrix of QSL and its subregions, we extract genuine multipartite negativity (GMN), quantum Fisher information, spin-spin correlators, and expectation value (EV) of the Wilson loop operator. In particular, time-dependence of GMN offers the most penetrating insights: (i) in the Markovian regime, it remains non-zero in larger loopy subregions of QSL (as also discovered very recently for closed QSLs) up to temperatures comparable to Kitaev exchange interaction at which other quantities, such as EV of the Wilson loop operator, vanish; (ii) in the non-Markovian regime with pronounced memory effects, GMN remains non-zero up to even higher temperatures, while also acquiring non-zero value in smaller non-loopy subregions. The non-Markovian dynamics can also generate emergent interactions between spins, thereby opening avenues for tailoring properties of QSL via environmental engineering.
摘要: Topological properties of many-body entanglement in quantum spin liquids (QSLs), persisting at arbitrarily long distances, have been intensely explored over the past two decades, but mostly for QSLs viewed as {\em closed} quantum systems. However, in experiments and potential quantum computing applications, candidate materials for this exotic phase of quantum matter will always interact with a dissipative environment, such as the one generated by bosonic quasiparticles in solids at finite temperature. Here we investigate the spatial structure and stability of entanglement in the Kitaev model of QSL made {\em open} by sudden coupling to an infinite bosonic bath of Caldeira-Leggett type and time-evolved using the Lindblad quantum master equation in the Markovian regime (i.e., for weak coupling) or tensor network methods for open quantum systems in the non-Markovian regime (i.e., for strong coupling). From the time-evolved density matrix of QSL and its subregions, we extract genuine multipartite negativity (GMN), quantum Fisher information, spin-spin correlators, and expectation value (EV) of the Wilson loop operator. In particular, time-dependence of GMN offers the most penetrating insights: (i) in the Markovian regime, it remains non-zero in larger loopy subregions of QSL (as also discovered very recently for closed QSLs) up to temperatures comparable to Kitaev exchange interaction at which other quantities, such as EV of the Wilson loop operator, vanish; (ii) in the non-Markovian regime with pronounced memory effects, GMN remains non-zero up to even higher temperatures, while also acquiring non-zero value in smaller non-loopy subregions. The non-Markovian dynamics can also generate emergent interactions between spins, thereby opening avenues for tailoring properties of QSL via environmental engineering.
评论: 9页,3图,95参考文献,补充材料包含额外的图表和推导,可从以下网址获取:https://wiki.physics.udel.edu/qttg/Publications
主题: 强关联电子 (cond-mat.str-el)
引用方式: arXiv:2510.02256 [cond-mat.str-el]
  (或者 arXiv:2510.02256v2 [cond-mat.str-el] 对于此版本)
  https://doi.org/10.48550/arXiv.2510.02256
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Federico Garcia-Gaitan [查看电子邮件]
[v1] 星期四, 2025 年 10 月 2 日 17:39:53 UTC (283 KB)
[v2] 星期四, 2025 年 10 月 9 日 17:53:03 UTC (286 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
许可图标 查看许可
当前浏览上下文:
cond-mat.str-el
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-10
切换浏览方式为:
cond-mat

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号