数学 > 经典分析与常微分方程
[提交于 2025年10月23日
]
标题: 奇异线性哈密顿束的重整化振动理论
标题: Renormalized oscillation theory for singular linear Hamiltonian pencils
摘要: For many applications, critical information about system dynamics is encoded in associated eigenvalue problems that can be posed as linear Hamiltonian systems with suitable boundary conditions. Motivated by examples from hydrodynamics, quantum mechanics, and magnetohydrodynamics (MHD), we develop a general framework for analyzing a broad class of linear Hamiltonian systems with at least one singular boundary condition and possible nonlinear dependence on the spectral parameter. We show that renormalized oscillation results can be obtained in a natural way through consideration of the Maslov index associated with appropriately chosen paths of Lagrangian subspaces of $\mathbb{C}^{2n}$. This extends previous work by the authors for regular linear Hamiltonian systems that depend nonlinearly on the spectral parameter and singular linear Hamiltonian systems that depend linearly on the spectral parameter. We conclude the study by using our framework to study the spectrum in the setting of each of our motivating examples.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.