计算机科学 > 数据结构与算法
[提交于 2025年10月25日
]
标题: 关于看起来像路径的整数规划
标题: On Integer Programs That Look Like Paths
摘要: 求解形式为$\min \{\mathbf{x} \mid A\mathbf{x} = \mathbf{b}, \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}, \mathbf{x} \in \mathbb{Z}^n \}$的整数规划问题,在一般情况下是$\mathsf{NP}$-难的。 因此,人们投入了大量努力来识别可以在多项式或$\mathsf{FPT}$时间内求解的整数规划子类。 这些整数规划中的许多都具有约束矩阵的星型结构。 arguably 最简单的不是星型的形式是路径。 我们研究约束矩阵$A$具有这种路径型结构的整数规划:每个非零系数最多出现在两个连续的约束中。 我们证明,即使所有$A$的系数都被限制为 8,通过从 3-SAT 的约简,判断此类整数规划的可行性是$\mathsf{NP}$-难的。 鉴于存在针对具有星型结构的整数规划的有效算法,以及一个密切相关的情况,其中每列的绝对值之和被限制为 2(因此,每列最多有两个非零元素,其大小不超过 2),这一难度结果令人惊讶。
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.