Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:2510.26679

帮助 | 高级搜索

计算机科学 > 机器学习

arXiv:2510.26679 (cs)
[提交于 2025年10月30日 ]

标题: 通过矩阵相干性的紧致差分私有PCA

标题: Tight Differentially Private PCA via Matrix Coherence

Authors:Tommaso d'Orsi, Gleb Novikov
摘要: We revisit the task of computing the span of the top $r$ singular vectors $u_1, \ldots, u_r$ of a matrix under differential privacy. We show that a simple and efficient algorithm -- based on singular value decomposition and standard perturbation mechanisms -- returns a private rank-$r$ approximation whose error depends only on the \emph{秩-$r$相干性} of $u_1, \ldots, u_r$ and the spectral gap $\sigma_r - \sigma_{r+1}$. This resolves a question posed by Hardt and Roth~\cite{hardt2013beyond}. Our estimator outperforms the state of the art -- significantly so in some regimes. In particular, we show that in the dense setting, it achieves the same guarantees for single-spike PCA in the Wishart model as those attained by optimal non-private algorithms, whereas prior private algorithms failed to do so. 此外,我们证明了(rank-$r$)一致性在高斯扰动下不会增加。 这表明基于高斯机制的任何估计器——包括我们的方法——都保持输入的一致性。 我们猜想对于其他结构化模型,包括图中的植入问题,类似的特性也成立。 我们还探讨了一致性在图问题中的应用。 特别是,我们在低一致性的假设下,提出了针对Max-Cut和其他约束满足问题的差分隐私算法。
摘要: We revisit the task of computing the span of the top $r$ singular vectors $u_1, \ldots, u_r$ of a matrix under differential privacy. We show that a simple and efficient algorithm -- based on singular value decomposition and standard perturbation mechanisms -- returns a private rank-$r$ approximation whose error depends only on the \emph{rank-$r$ coherence} of $u_1, \ldots, u_r$ and the spectral gap $\sigma_r - \sigma_{r+1}$. This resolves a question posed by Hardt and Roth~\cite{hardt2013beyond}. Our estimator outperforms the state of the art -- significantly so in some regimes. In particular, we show that in the dense setting, it achieves the same guarantees for single-spike PCA in the Wishart model as those attained by optimal non-private algorithms, whereas prior private algorithms failed to do so. In addition, we prove that (rank-$r$) coherence does not increase under Gaussian perturbations. This implies that any estimator based on the Gaussian mechanism -- including ours -- preserves the coherence of the input. We conjecture that similar behavior holds for other structured models, including planted problems in graphs. We also explore applications of coherence to graph problems. In particular, we present a differentially private algorithm for Max-Cut and other constraint satisfaction problems under low coherence assumptions.
评论: SODA 2026;同等贡献
主题: 机器学习 (cs.LG) ; 数据结构与算法 (cs.DS)
引用方式: arXiv:2510.26679 [cs.LG]
  (或者 arXiv:2510.26679v1 [cs.LG] 对于此版本)
  https://doi.org/10.48550/arXiv.2510.26679
通过 DataCite 发表的 arXiv DOI(待注册)

提交历史

来自: Gleb Novikov [查看电子邮件]
[v1] 星期四, 2025 年 10 月 30 日 16:47:26 UTC (62 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
查看许可
当前浏览上下文:
cs.LG
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-10
切换浏览方式为:
cs
cs.DS

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号