Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cond-mat > arXiv:cond-mat/9512003

帮助 | 高级搜索

凝聚态物理

arXiv:cond-mat/9512003 (cond-mat)
[提交于 1995年12月1日 ]

标题: 量子化过程对于驱动量子阱 - 扰动展开和经典极限

标题: The Quantization process for the Driven Quantum Well - Perturbative Expansion and the Classical Limit

Authors:Eli Eisenberg, Nadav Shnerb, Rachel Avigur
摘要: 我们考虑了在一维无限深势阱中受驱动粒子的量子力学行为。我们表明,时变微扰级数在这种情况下由动量算符的微妙非平凡性质所引发,即其非自伴性。利用这一展开,我们计算了截面和能量增益的一阶贡献,并讨论了它们的经典极限。在这个极限下,单周期的能量增益收敛于其经典对应物——经典局部(动量空间)扩散系数。我们将经典和量子力学的结果与数值模拟进行了比较。
摘要: We consider the quantum mechanical behavior of a driven particle in an infinite 1D potential well. We show that the time dependent perturbation series is induced by the delicate non-trivial properties of the momentum operator in this case, namely, its non-self-adjointness. Using this expansion, we calculate the first order contribution to the cross section and the energy gain, and discuss their classical limit. In this limit the one-period energy gain converges to its classical analog - the classical local (momentum space) diffusion coefficient. Both the classical and quantum mechanical results are compared with numerical simulations.
评论: 第一张图只能通过传真获得。它只包含经典系统的庞加莱映射(参见文本)。它也可以在PRE期刊1996年1月卷的我们的论文中找到。大多数读者可以不看这张图。然而,如果您感兴趣,请通过电子邮件发送您的传真号码给我们。
主题: 凝聚态物理 (cond-mat) ; 混沌动力学 (nlin.CD)
引用方式: arXiv:cond-mat/9512003
  (或者 arXiv:cond-mat/9512003v1 对于此版本)
  https://doi.org/10.48550/arXiv.cond-mat/9512003
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Eli Eisenberg [查看电子邮件]
[v1] 星期五, 1995 年 12 月 1 日 10:39:03 UTC (35 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
cond-mat
< 上一篇   |   下一篇 >
新的 | 最近的 | 1995-12

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号