Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cond-mat > arXiv:cond-mat/9606137

帮助 | 高级搜索

凝聚态物理

arXiv:cond-mat/9606137 (cond-mat)
[提交于 1996年6月18日 ]

标题: 非对称6-顶点模型的自由能奇异性与非对称XXZ链的激发

标题: The free energy singularity of the asymmetric 6--vertex model and the excitations of the asymmetric XXZ chain

Authors:Giuseppe Albertini, Silvio Renato Dahmen, Birgit Wehefritz
摘要: We consider the asymmetric six--vertex model, {\it 即} the symmetric six--vertex model in an external field with both horizontal and vertical components, and the relevant asymmetric $XXZ$ chain. The model is widely used to describe the equilibrium shape of a crystal. By means of the Bethe Ansatz solution we determine the exact free energy singularity, as function of both components of the field, at two special points on the phase boundary. We confirm the exponent $\frac{3}{2}$ (already checked experimentally), as the antiferroelectric ordered phase is reached from the incommensurate phase normally to the phase boundary, and we determine a new singularity along the tangential direction. Both singularities describe the rounding off of the crystal near a facet. The hole excitations of the spin chain at this point on the phase boundary show dispersion relations with the striking form $\Delta E\sim (\Delta P)^{\half}$ at small momenta, leading to a finite size scaling $\Delta E \sim N^{-\half}$ for the low--lying excited states, where $N$ is the size of the chain. We conjecture that a Pokrovskii--Talapov phase transition is replaced at this point by a transition with diverging correlation length, but not classified in terms of conformal field theory.
摘要: We consider the asymmetric six--vertex model, {\it i.e.} the symmetric six--vertex model in an external field with both horizontal and vertical components, and the relevant asymmetric $XXZ$ chain. The model is widely used to describe the equilibrium shape of a crystal. By means of the Bethe Ansatz solution we determine the exact free energy singularity, as function of both components of the field, at two special points on the phase boundary. We confirm the exponent $\frac{3}{2}$ (already checked experimentally), as the antiferroelectric ordered phase is reached from the incommensurate phase normally to the phase boundary, and we determine a new singularity along the tangential direction. Both singularities describe the rounding off of the crystal near a facet. The hole excitations of the spin chain at this point on the phase boundary show dispersion relations with the striking form $\Delta E\sim (\Delta P)^{\half}$ at small momenta, leading to a finite size scaling $\Delta E \sim N^{-\half}$ for the low--lying excited states, where $N$ is the size of the chain. We conjecture that a Pokrovskii--Talapov phase transition is replaced at this point by a transition with diverging correlation length, but not classified in terms of conformal field theory.
评论: 42页,LaTeX,3个ps图 uu编码
主题: 凝聚态物理 (cond-mat) ; 高能物理 - 理论 (hep-th); 精确可解与可积系统 (nlin.SI)
引用方式: arXiv:cond-mat/9606137
  (或者 arXiv:cond-mat/9606137v1 对于此版本)
  https://doi.org/10.48550/arXiv.cond-mat/9606137
通过 DataCite 发表的 arXiv DOI
期刊参考: Nucl.Phys.B493:541-570,1997
相关 DOI: https://doi.org/10.1016/S0550-3213%2897%2900078-3
链接到相关资源的 DOI

提交历史

来自: Birgit Wehefritz [查看电子邮件]
[v1] 星期二, 1996 年 6 月 18 日 15:44:31 UTC (38 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
cond-mat
< 上一篇   |   下一篇 >
新的 | 最近的 | 1996-06

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号