Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:cs/0309033

帮助 | 高级搜索

计算机科学 > 计算复杂性

arXiv:cs/0309033 (cs)
[提交于 2003年9月17日 ]

标题: TO_BE_TRANSLATED: Lower bounds for predecessor searching in the cell probe model

标题: Lower bounds for predecessor searching in the cell probe model

Authors:Pranab Sen, S. Venkatesh
摘要: TO_BE_TRANSLATED: We consider a fundamental problem in data structures, static predecessor searching: Given a subset S of size n from the universe [m], store S so that queries of the form "What is the predecessor of x in S?" can be answered efficiently. We study this problem in the cell probe model introduced by Yao. Recently, Beame and Fich obtained optimal bounds on the number of probes needed by any deterministic query scheme if the associated storage scheme uses only n^{O(1)} cells of word size (\log m)^{O(1)} bits. We give a new lower bound proof for this problem that matches the bounds of Beame and Fich. Our lower bound proof has the following advantages: it works for randomised query schemes too, while Beame and Fich's proof works for deterministic query schemes only. It also extends to `quantum address-only' query schemes that we define in this paper, and is simpler than Beame and Fich's proof. We prove our lower bound using the round elimination approach of Miltersen, Nisan, Safra and Wigderson. Using tools from information theory, we prove a strong round elimination lemma for communication complexity that enables us to obtain a tight lower bound for the predecessor problem. Our strong round elimination lemma also extends to quantum communication complexity. We also use our round elimination lemma to obtain a rounds versus communication tradeoff for the `greater-than' problem, improving on the tradeoff in Miltersen et al. We believe that our round elimination lemma is of independent interest and should have other applications.
摘要: We consider a fundamental problem in data structures, static predecessor searching: Given a subset S of size n from the universe [m], store S so that queries of the form "What is the predecessor of x in S?" can be answered efficiently. We study this problem in the cell probe model introduced by Yao. Recently, Beame and Fich obtained optimal bounds on the number of probes needed by any deterministic query scheme if the associated storage scheme uses only n^{O(1)} cells of word size (\log m)^{O(1)} bits. We give a new lower bound proof for this problem that matches the bounds of Beame and Fich. Our lower bound proof has the following advantages: it works for randomised query schemes too, while Beame and Fich's proof works for deterministic query schemes only. It also extends to `quantum address-only' query schemes that we define in this paper, and is simpler than Beame and Fich's proof. We prove our lower bound using the round elimination approach of Miltersen, Nisan, Safra and Wigderson. Using tools from information theory, we prove a strong round elimination lemma for communication complexity that enables us to obtain a tight lower bound for the predecessor problem. Our strong round elimination lemma also extends to quantum communication complexity. We also use our round elimination lemma to obtain a rounds versus communication tradeoff for the `greater-than' problem, improving on the tradeoff in Miltersen et al. We believe that our round elimination lemma is of independent interest and should have other applications.
评论: TO_BE_TRANSLATED: Journal version of a paper at ICALP 2001 (quant-ph/0104100) and a paper at CCC 2003. 27 pages
主题: 计算复杂性 (cs.CC) ; 数据结构与算法 (cs.DS); 量子物理 (quant-ph)
ACM 类: E.1; E.4
引用方式: arXiv:cs/0309033 [cs.CC]
  (或者 arXiv:cs/0309033v1 [cs.CC] 对于此版本)
  https://doi.org/10.48550/arXiv.cs/0309033
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Pranab Sen [查看电子邮件]
[v1] 星期三, 2003 年 9 月 17 日 19:14:05 UTC (29 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
cs.CC
< 上一篇   |   下一篇 >
新的 | 最近的 | 2003-09

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号