计算机科学 > 计算复杂性
[提交于 2003年9月17日
]
标题: TO_BE_TRANSLATED: Lower bounds for predecessor searching in the cell probe model
标题: Lower bounds for predecessor searching in the cell probe model
摘要: TO_BE_TRANSLATED: We consider a fundamental problem in data structures, static predecessor searching: Given a subset S of size n from the universe [m], store S so that queries of the form "What is the predecessor of x in S?" can be answered efficiently. We study this problem in the cell probe model introduced by Yao. Recently, Beame and Fich obtained optimal bounds on the number of probes needed by any deterministic query scheme if the associated storage scheme uses only n^{O(1)} cells of word size (\log m)^{O(1)} bits. We give a new lower bound proof for this problem that matches the bounds of Beame and Fich. Our lower bound proof has the following advantages: it works for randomised query schemes too, while Beame and Fich's proof works for deterministic query schemes only. It also extends to `quantum address-only' query schemes that we define in this paper, and is simpler than Beame and Fich's proof. We prove our lower bound using the round elimination approach of Miltersen, Nisan, Safra and Wigderson. Using tools from information theory, we prove a strong round elimination lemma for communication complexity that enables us to obtain a tight lower bound for the predecessor problem. Our strong round elimination lemma also extends to quantum communication complexity. We also use our round elimination lemma to obtain a rounds versus communication tradeoff for the `greater-than' problem, improving on the tradeoff in Miltersen et al. We believe that our round elimination lemma is of independent interest and should have other applications.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.