Probing nuclear structure in relativistic p–O and O–O collisions at the LHC
through the measurement of anisotropic flow coefficients

Aswathy Menon K R1 Aswathy.Menon@cern.ch    Suraj Prasad1 Suraj.Prasad@cern.ch    Neelkamal Mallick2 Neelkamal.Mallick@cern.ch    Raghunath Sahoo1 Raghunath.Sahoo@cern.ch    Gergely Gábor Barnaföldi3 barnafoldi.gergely@wigner.hun-ren.hu 1Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India 2University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014, Jyväskylä, Finland 3HUN-REN Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Str., H-1121 Budapest, Hungary
(May 28, 2025)
Abstract

RHIC and LHC plan to inject O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nuclei with a focus to investigate collectivity and the origin of quark-gluon plasma signatures in small collision systems. O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nuclei is known to possess clusters of α𝛼\alphaitalic_α-particles (He4superscriptHe4{}^{4}\rm Hestart_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He) inside the nucleus. In this paper, we study the anisotropic flow coefficients such as elliptic flow (v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT) and triangular flow (v3subscript𝑣3v_{3}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT), which are sensitive to the nuclear geometry of colliding nuclei, for p–O and O–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and 7 TeV respectively. The study is performed employing a hybrid model encompassing IPGlasma + MUSIC + iSS + UrQMD. The results of the clustered nuclear geometry are compared with those of the Woods – Saxon nuclear profile. Both initial and final state anisotropies are explored. This study is thus one of its first kind, where the study of anisotropic flow coefficients for p–O and O–O collisions is presented using a hybrid hydrodynamics model. We find a small effect of α𝛼\alphaitalic_α-clustering in p–O, while a significant one for O–O collisions. It is also observed that the magnitude of the effect correlates with the size of the 4He.

p–O collisions, azimuthal correlations

I INTRODUCTION

The heavy-ion collisions at the Large Hadron Collider (LHC), CERN, and Relativistic Heavy-Ion Collider (RHIC), BNL, aim to recreate a deconfined matter of partons, known to have existed shortly after the Big Bang. This deconfined and thermalised medium of partons, known as Quark-Gluon Plasma (QGP), is transient in nature and is shown to possess collective phenomena similar to fluids ALICE:2022wpn ; Heinz:2013th . Due to the short lifetime of QGP, its existence in heavy-ion collisions is often inferred by studying indirect signatures, which include strangeness enhancement Rafelski:1982pu , collectivity Voloshin:1994mz , quarkonia suppression Matsui:1986dk , jet-quenching Gyulassy:2000fs ; Gyulassy:2000er ; Levai:2001dc , to name a few. Small systems like proton-proton (pp) and p–Pb are often considered as baselines to study QGP and cold nuclear matter effects in heavy-ion collisions. Thanks to the observation of these collective and other heavy-ion-like phenomena in high-multiplicity pp and p–Pb collisions at the LHC energies ALICE:2024vzv ; ALICE:2016fzo , the small collision systems are of great interest, where the existence of a QGP medium is hinted at. Thus, both RHIC and LHC prepare to inject small nuclei, like e.g., Oxygen (O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O) ions into the beam pipe to perform O–O and p–O collisions Brewer:2021kiv ; Katz:2019qwv . These collision systems are important as they bridge the multiplicity gap between high multiplicity pp, p–Pb, and peripheral Pb–Pb collisions. Studying them ought to provide insights into the nature of the QCD medium in small systems where some of the signatures– like jet quenching and quarkonia suppression– are absent. Further p–O collisions are specifically important as their measurements at the LHC would be useful to tune the cosmic ray air shower models, leading us to solve the existing puzzles Scaria:2023coa .

One of the key aspects to investigate in p–O and O–O collisions is rooted in low-energy nuclear physics, which suggests the presence of α𝛼\alphaitalic_α-clustered nuclear structure in light nuclei having 4n4𝑛4n4 italic_n number of nucleons. Oxygen (O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O) is one such nuclei where the α𝛼\alphaitalic_α-particles (He4superscriptHe4{}^{4}\rm Hestart_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He nucleus) arrange themselves at the corners of a regular tetrahedron gamow ; Wheeler:1937zza ; Bijker:2014tka ; Wang:2019dpl ; He:2014iqa ; He:2021uko ; Otsuka:2022bcf . In heavy-ion collisions, several studies argue for a modification in the final state particle production due to a change in the initial state nuclear structure of the colliding nuclei Behera:2023nwj ; Giacalone:2021udy ; Haque:2019vgi ; Behera:2023oxe ; ALICE:2021ibz ; ALICE:2018lao ; ATLAS:2019dct ; CMS:2019cyz ; STAR:2015mki ; Giacalone:2021udy ; Haque:2019vgi ; PHENIX:2018lia . The geometry scan program at RHIC is dedicated to understanding the particle production due to the specific geometry of the colliding nuclei PHENIX:2018lia ; PHENIX:2021ubk ; STAR:2022pfn ; STAR:2023wmd . A number of studies at the RHIC and LHC energies have been performed to study the impact of clustered structure in the final state particle production and flow in O–O collisions Li:2020vrg ; Rybczynski:2019adt ; Sievert:2019zjr ; Huang:2019tgz ; Behera:2023nwj ; Behera:2021zhi ; Lim:2018huo ; Summerfield:2021oex ; Schenke:2020mbo ; Rybczynski:2019adt ; Sievert:2019zjr ; Huang:2019tgz ; Huss:2020whe ; Zakharov:2021uza ; Giacalone:2024ixe ; Zhang:2024vkh ; R:2024eni ; Prasad:2024ahm ; Ding:2023ibq ; Wang:2021ghq ; Rybczynski:2017nrx ; Svetlichnyi:2023nim . It is observed that due to a compact nuclear geometry, O–O collisions with clustered nuclear geometry yield a higher particle multiplicity and energy density in the central collisions as compared to a traditional Woods-Saxon nuclear profile Behera:2021zhi . Additionally, the clustered O–O collisions lead to significantly large values of triangular flow Behera:2023nwj ; Prasad:2024ahm . One of our earlier studies concluded that the anisotropic flow fluctuations are sensitive to the clustered nuclear geometry of the colliding nuclei Prasad:2024ahm . In several studies, the authors have performed O–Au, C–Au, O–Pb, and Ne–Pb collisions at the RHIC and LHC energies to investigate the clustered structure of light nuclei Bozek:2014cva ; Broniowski:2013dia ; Giacalone:2024luz ; Lim:2018huo . However, similar studies are underperformed in p–O collisions, which are necessary to understand the effect of the clustered structure of O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O in asymmetric small collisions so as to identify the effects coming from the initial nuclear profile and small system dynamics. Additionally, anisotropic flow measurements in p–O and O–O collisions are capable of making remarkable additions to the present understanding of partonic collectivity recently observed in pp and p–Pb collisions by the ALICE collaboration ALICE:2024vzv . Interestingly, one recent study based on AMPT investigates the effect of clustered nuclear geometry in p–O collisions R:2024eni , which shows that the effects of α𝛼\alphaitalic_α-clustering are significantly different from those of the unclustered nuclear profile, as far as the flow-observables under study are concerned. The uniqueness of α𝛼\alphaitalic_α-cluster results is found to be consistent with that of the AMPT results on O–O collisions at sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV as well R:2024eni ; Behera:2021zhi .

In this paper, we simulate p–O and O–O collisions at at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and 7 TeV, respectively, where the measurements with α𝛼\alphaitalic_α-clustered structure of O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nuclei are compared with those of the Woods-Saxon profile. We measure initial state eccentricity (ϵ2subscriptitalic-ϵ2\epsilon_{2}italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT), triangularity (ϵ3subscriptitalic-ϵ3\epsilon_{3}italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT) and compare them with final state anisotropic flow coefficients such as elliptic flow (v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT) and triangular flow (v3subscript𝑣3v_{3}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT) for both α𝛼\alphaitalic_α-clustered and Woods-Saxon nuclear profiles for both p–O and O–O collisions. The anisotropic flow coefficients are calculated using the two-particle Q-cumulant method. We use a hybrid model referred to as IPGlasma + MUSIC + iSS + UrQMD in the work.

The paper is organised as follows. We start with a brief introduction in Section I. Section II discusses the event generation using the hybrid model and the two-particle Q-cumulant method. In Section III, we present our results with necessary discussions. Section IV summarises the study with a brief outlook.

II Event Generation and Methodology

II.1 IP-Glasma + MUSIC + iSS + UrQMD

In this work, we employ a hybrid framework – IP-Glasma+MUSIC+iSS+UrQMD model to simulate the evolution of the ultra-relativistic p–O and O–O collisions, as it gives a good description of particle production and flow across small to large collisions McDonald:2016vlt . Here, the initial conditions of the collisions are described by the impact-parameter-dependent Glasma (IP-Glasma) model, MUSIC handles the hydrodynamic evolution of the fireball, the iSS package does the particlization from the MUSIC hypersurface, and the UrQMD transport model carries out the hadronic interactions. These four stages are briefly discussed below, along with the details of the parameters/settings used in our study.

II.1.1 IP-Glasma: Pre-equilibrium

IP-Glasma is a theoretical framework based on Color Glass Condensate (CGC) effective field theory, which simulates the early stage dynamics of gluon fields during relativistic collisions Schenke:2012wb ; Schenke:2012hg ; McLerran:1993ni ; McLerran:1993ka . It is an integration of two frameworks McDonald:2016vlt : the impact-parameter-dependent dipole saturation model (IP-Sat) model Bartels:2002cj ; Kowalski:2003hm , which handles the initial nuclear configurations, and the Glasma framework Krasnitz:1998ns ; Krasnitz:1999wc ; Krasnitz:2001qu ; Krasnitz:2000gz , which evolves these configurations post-collision till thermalization. The two nuclei, described as two sheets of CGC fields, are boosted and made to collide with each other at τ=0𝜏0\tau=0italic_τ = 0. Further, the classical Yang-Mills equations, which model the glasma evolution, are solved numerically using a lattice approach (lattice size, L = 14, lattice spacing, a = 0.02 fm) Schenke:2020mbo , which generates the initial energy-momentum tensor (TYMμνsuperscriptsubscript𝑇𝑌𝑀𝜇𝜈T_{YM}^{\mu\nu}italic_T start_POSTSUBSCRIPT italic_Y italic_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT) of the system. The model accounts for the two essential sources of event-by-event fluctuations: 1) the random spatial distribution of nucleons inside the colliding nuclei 2) the fluctuating color charge densities within each nucleon. The color charge fluctuations are described by the IP-Sat model, where the sub-nucleonic fluctuations are modelled as three Gaussian hotspots per nucleon. The nucleonic positions are randomly sampled for each event, according to the Woods-Saxon distribution with the parameter settings being the same as those in Ref. Prasad:2024ahm .

In addition, since we aim to understand the effect of α𝛼\alphaitalic_α-clustering on the flow coefficients, we also sample nucleons into an α𝛼\alphaitalic_α-clustered geometry such that the four α𝛼\alphaitalic_α-clusters of the O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nucleus are at the corners of a regular tetrahedron, while the nucleons inside each cluster are distributed according to Woods-Saxon profile. The values of the parameters chosen for these distributions can be found in Ref. Prasad:2024ahm . Finally, the output of IP-Glasma is a fluctuating energy-momentum tensor computed at τswitch=0.4fmsubscript𝜏switch0.4fm\tau_{\rm switch}=0.4~{}\rm fmitalic_τ start_POSTSUBSCRIPT roman_switch end_POSTSUBSCRIPT = 0.4 roman_fm, which is fed to MUSIC simulations for hydrodynamic evolution.

II.1.2 MUSIC: Hydrodynamics

Using viscous relativistic hydrodynamics, MUSIC evolves the energy-momentum tensor obtained from IP-Glasma at the thermalization time τ0=0.4subscript𝜏00.4\tau_{0}=0.4italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0.4 fm, under the assumption of local thermal equilibrium. The evolution incorporates shear and bulk viscous effects, solving the conservation law μTμνsubscript𝜇superscript𝑇𝜇𝜈\partial_{\mu}T^{\mu\nu}∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT Schenke:2010nt ; Schenke:2010rr ; Paquet:2015lta . The simulation is performed in a (2+1)D boost-invariant set-up, using an equation-of-state parametrization "s95p-v1.2" that interpolates between lattice-QCD and hadron resonance gas Huovinen:2009yb . A constant shear viscosity to entropy ratio of η/s=0.12𝜂𝑠0.12\eta/s=0.12italic_η / italic_s = 0.12 is used along with a temperature-dependent bulk viscosity ζ/s(T)𝜁𝑠𝑇\zeta/s(T)italic_ζ / italic_s ( italic_T ) as described in Ref. Schenke:2020mbo . Further, the Kurganov-Tadmor numerical algorithm solves the hydrodynamic equations Kurganov:2000ovy ; Jeon:2015dfa . The evolution continues until the local energy density falls to a switching energy density, eswitch=0.18GeV/fm3subscript𝑒switch0.18GeVsuperscriptfm3e_{\rm switch}=0.18~{}\rm GeV/fm^{3}italic_e start_POSTSUBSCRIPT roman_switch end_POSTSUBSCRIPT = 0.18 roman_GeV / roman_fm start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Schenke:2020mbo , at which a freeze-out hypersurface is constructed, marking the end of the hydrodynamic description.

II.1.3 iSS: Particlization

The hydrodynamic freeze-out hypersurface data produced by MUSIC acts as the input for the iSS (iSpectraSamplerShen:2014vra ; Denicol:2018wdp , which converts the fluid-like medium into hadrons, using the Cooper-Frye formula Cooper:1974mv ; Dusling:2009df ; Schenke:2020mbo . Particle sampling is done based on the local flow velocity, temperature, and viscous corrections, reflecting the momentum and spatial distributions of particles emitted at freeze-out. iSS allows oversampling; hence, to increase statistical precision without re-running hydrodynamics, a finite number of events can be sampled from each MUSIC hypersurface for p–O(O–O) collisions at sNN=9.61(7)subscript𝑠NN9.617\sqrt{s_{\rm NN}}=9.61(7)square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 ( 7 ) TeV. The total number of hadronic freezeout performed per IPGlasma + MUSIC event i.e. Nsample=subscript𝑁sampleabsentN_{\rm sample}=italic_N start_POSTSUBSCRIPT roman_sample end_POSTSUBSCRIPT = 200 in our study.

II.1.4 UrQMD: Hadronic cascade

Particles sampled from iSS are propagated using Ultra-relativistic Quantum Molecular Dynamics (UrQMD) microscopic transport model, with its default settings, which provides a realistic simulation of final-stage hadronic interactions such as elastic and inelastic hadronic scatterings, resonance decays, strong decays, and baryon-antibaryon annihilations Bass:1998ca ; Bleicher:1999xi . This model, which functions by solving the Boltzmann transport equation using Monte Carlo techniques, handles hadrons up to 2.25 GeV in mass and performs a dynamical freeze-out for different particle species Schenke:2020mbo . The model outputs the final-state four momenta and PIDs, which can be stored for subsequent examination and analysis.

II.2 Two-particle Q-Cumulant method

One of the important signatures of the hydrodynamic behavior of the system formed in relativistic nuclear collisions is given by collectivity. The studies of anisotropic flow coefficients are thus crucial to understand the collective behaviour of the system formed in nuclear collisions. Anisotropic flow is quantified using the coefficients of the Fourier expansion of the azimuthal distribution of the particles in the final state, given as follows Voloshin:1994mz ,

dNdϕ1+n=12vncos[n(ϕψn)].proportional-to𝑑𝑁𝑑italic-ϕ1superscriptsubscript𝑛12subscript𝑣𝑛𝑛italic-ϕsubscript𝜓𝑛\frac{dN}{d\phi}\propto 1+\sum_{n=1}^{\infty}2v_{n}\cos[n(\phi-\psi_{n})]\ .divide start_ARG italic_d italic_N end_ARG start_ARG italic_d italic_ϕ end_ARG ∝ 1 + ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT 2 italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT roman_cos [ italic_n ( italic_ϕ - italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ] . (1)

Here, ϕitalic-ϕ\phiitalic_ϕ is the azimuthal angle, ψnsubscript𝜓𝑛\psi_{n}italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is the n𝑛nitalic_nth harmonic symmetry plane angle, and vnsubscript𝑣𝑛v_{n}italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are the coefficients of the Fourier expansion, also known as the anisotropic flow coefficients. v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, v3subscript𝑣3v_{3}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, etc., are respectively called as elliptic flow, triangular flow, etc, and can be calculated as, vn=cos[n(ϕψn)]subscript𝑣𝑛delimited-⟨⟩𝑛italic-ϕsubscript𝜓𝑛v_{n}=\langle\cos[n(\phi-\psi_{n})]\rangleitalic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ⟨ roman_cos [ italic_n ( italic_ϕ - italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ] ⟩. The estimation of ψnsubscript𝜓𝑛\psi_{n}italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is not trivial in experiments, thus, we use the two-particle Q-cumulant method to estimate the flow coefficients Bilandzic:2010jr ; Zhou:2015iba . The estimation of n𝑛nitalic_nth order flow coefficient with Q-cumulant method requires the n𝑛nitalic_nth order flow vectors (Qnsubscript𝑄𝑛Q_{n}italic_Q start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT), defined as follows,

Qn=j=1Meinϕj,subscript𝑄𝑛superscriptsubscript𝑗1𝑀superscript𝑒𝑖𝑛subscriptitalic-ϕ𝑗Q_{n}=\sum_{j=1}^{M}e^{in\phi_{j}}\ ,italic_Q start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_M end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_n italic_ϕ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (2)

where M𝑀Mitalic_M is the number of charged particles in an event. As mentioned in Section II, in this study, we have used a hybrid of IPGlasma + MUSIC + iSS + UrQMD models, where each IPGlasma + MUSIC event is passed 200 times through iSS + UrQMD. To reduce the random fluctuations arising due to sampling of a finite number of particles, we define the flow vector of a super event (QnSEsubscriptsuperscript𝑄SE𝑛Q^{\rm SE}_{n}italic_Q start_POSTSUPERSCRIPT roman_SE end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT) as follows McDonald:2016vlt ,

QnSE=j=1Nsamplek=1Mjeinϕjk.subscriptsuperscript𝑄SE𝑛superscriptsubscript𝑗1subscript𝑁samplesuperscriptsubscript𝑘1subscript𝑀𝑗superscript𝑒𝑖𝑛subscriptitalic-ϕ𝑗𝑘Q^{\rm SE}_{n}=\sum_{j=1}^{N_{\rm sample}}\sum_{k=1}^{M_{j}}e^{in\phi_{jk}}\ .italic_Q start_POSTSUPERSCRIPT roman_SE end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT roman_sample end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_n italic_ϕ start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT end_POSTSUPERSCRIPT . (3)

Here, Mjsubscript𝑀𝑗M_{j}italic_M start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is the multiplicity of the j𝑗jitalic_jth hadronic sample, and ϕjksubscriptitalic-ϕ𝑗𝑘\phi_{jk}italic_ϕ start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT is the azimuthal angle of the k𝑘kitalic_kth particle in this sample. To reduce the contribution of nonflow, one can make two super-sub events, A𝐴Aitalic_A and B𝐵Bitalic_B respectively, separated by a pseudorapidity gap, |Δη|>1Δ𝜂1|\Delta\eta|>1| roman_Δ italic_η | > 1. Corresponding flow vector can be denoted as, QnAsubscriptsuperscript𝑄𝐴𝑛Q^{A}_{n}italic_Q start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and QnBsubscriptsuperscript𝑄𝐵𝑛Q^{B}_{n}italic_Q start_POSTSUPERSCRIPT italic_B end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT with multiplicities MAsubscript𝑀𝐴M_{A}italic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and MBsubscript𝑀𝐵M_{B}italic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT respectively. Consequently, the two-particle correlation is given by,

2Δη=QnAQnBMAMB.subscriptdelimited-⟨⟩2Δ𝜂superscriptsubscript𝑄𝑛𝐴superscriptsubscript𝑄𝑛𝐵subscript𝑀𝐴subscript𝑀𝐵\langle 2\rangle_{\Delta\eta}=\frac{Q_{n}^{A}\cdot Q_{n}^{B*}}{M_{A}\cdot M_{B% }}\ .⟨ 2 ⟩ start_POSTSUBSCRIPT roman_Δ italic_η end_POSTSUBSCRIPT = divide start_ARG italic_Q start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ⋅ italic_Q start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_B ∗ end_POSTSUPERSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ⋅ italic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_ARG . (4)

The corresponding two-particle Q-cumulant can be calculated using the following expression.

cn{2,|Δη|}=2Δη,subscript𝑐𝑛2Δ𝜂subscriptdelimited-⟨⟩delimited-⟨⟩2Δ𝜂c_{n}\{2,|\Delta\eta|\}=\langle\langle 2\rangle\rangle_{\Delta\eta}\ ,italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | } = ⟨ ⟨ 2 ⟩ ⟩ start_POSTSUBSCRIPT roman_Δ italic_η end_POSTSUBSCRIPT , (5)

where, delimited-⟨⟩delimited-⟨⟩\langle\langle\dots\rangle\rangle⟨ ⟨ … ⟩ ⟩ denotes the average over the super events. Finally, the anisotropic flow coefficients can be calculated using the following expression.

vn{2,|Δη|}=cn{2,|Δη|}.subscript𝑣𝑛2Δ𝜂subscript𝑐𝑛2Δ𝜂v_{n}\{2,|\Delta\eta|\}=\sqrt{c_{n}\{2,|\Delta\eta|\}}\ .italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | } = square-root start_ARG italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | } end_ARG . (6)

II.3 Estimation of Spatial Geometry from IP-Glasma

One can quantify the initial state spatial anisotropy of the collision overlap region using eccentricity (ϵ2subscriptitalic-ϵ2\epsilon_{2}italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT), triangularity (ϵ3subscriptitalic-ϵ3\epsilon_{3}italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT), etc., as follows Petersen:2010cw ; Prasad:2022zbr ,

ϵn=rncos(nϕpart)2+rnsin(nϕpart)2rn,subscriptitalic-ϵ𝑛superscriptdelimited-⟨⟩superscript𝑟𝑛𝑛subscriptitalic-ϕpart2superscriptdelimited-⟨⟩superscript𝑟𝑛𝑛subscriptitalic-ϕpart2delimited-⟨⟩superscript𝑟𝑛\epsilon_{n}=\frac{\sqrt{\langle{r^{n}\cos(n\phi_{\text{part}})}\rangle^{2}+% \langle{r^{n}\sin(n\phi_{\text{part}})}\rangle^{2}}}{\langle{r^{n}}\rangle}\ ,italic_ϵ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG square-root start_ARG ⟨ italic_r start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT roman_cos ( italic_n italic_ϕ start_POSTSUBSCRIPT part end_POSTSUBSCRIPT ) ⟩ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ⟨ italic_r start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT roman_sin ( italic_n italic_ϕ start_POSTSUBSCRIPT part end_POSTSUBSCRIPT ) ⟩ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG ⟨ italic_r start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ⟩ end_ARG , (7)

where r𝑟ritalic_r and ϕpartsubscriptitalic-ϕpart\phi_{\rm part}italic_ϕ start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT denote the radial distance and azimuthal angle of the participant nucleons from the center in polar coordinates. However, with IP-Glasma, we can estimate the spatial anisotropy of the fluid just before the start of the MUSIC hydrodynamics. Here we have the energy density, ε(x,y)𝜀𝑥𝑦\varepsilon(x,y)italic_ε ( italic_x , italic_y ), in each fluid cell of dimension (dx,dyd𝑥d𝑦{\textrm{d}}x,{\textrm{d}}yd italic_x , d italic_y) at (x,y𝑥𝑦x,yitalic_x , italic_y) from the center (0,0000,00 , 0). Thus, Eq. (7) can be modified as follows Schenke:2013aza .

ϵn=(Arnε(x,y)cos(nϕpart)dxdy)2+(Arnε(x,y)sin(nϕpart)dxdy)2Arnε(x,y)dxdysubscriptitalic-ϵ𝑛superscriptsubscriptdouble-integral𝐴superscript𝑟𝑛𝜀𝑥𝑦𝑛subscriptitalic-ϕpartd𝑥d𝑦2superscriptsubscriptdouble-integral𝐴superscript𝑟𝑛𝜀𝑥𝑦𝑛subscriptitalic-ϕpartd𝑥d𝑦2subscriptdouble-integral𝐴superscript𝑟𝑛𝜀𝑥𝑦d𝑥d𝑦\epsilon_{n}=\frac{\sqrt{\big{(}\iint_{A}{r^{n}\varepsilon(x,y)\cos(n\phi_{\rm part% })}{\textrm{d}}x\;{\textrm{d}}y\big{)}^{2}+\big{(}\iint_{A}{r^{n}\varepsilon(x% ,y)\sin(n\phi_{\rm part})}{\textrm{d}}x\;{\textrm{d}}y\big{)}^{2}}}{\iint_{A}{% r^{n}\varepsilon(x,y){\textrm{d}}x\;{\textrm{d}}y}}italic_ϵ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG square-root start_ARG ( ∬ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_ε ( italic_x , italic_y ) roman_cos ( italic_n italic_ϕ start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ) d italic_x d italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( ∬ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_ε ( italic_x , italic_y ) roman_sin ( italic_n italic_ϕ start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ) d italic_x d italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG ∬ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_ε ( italic_x , italic_y ) d italic_x d italic_y end_ARG (8)

Here, the integral runs over all the fluid cell elements in the transverse area A𝐴Aitalic_A. r=x2+y2𝑟superscript𝑥2superscript𝑦2r=\sqrt{x^{2}+y^{2}}italic_r = square-root start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG is the radial distance of the fluid cell and ϕpart=tan1(yx)subscriptitalic-ϕpartsuperscript1𝑦𝑥\phi_{\rm part}=\tan^{-1}\big{(}\frac{y}{x}\big{)}italic_ϕ start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT = roman_tan start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( divide start_ARG italic_y end_ARG start_ARG italic_x end_ARG ) is the corresponding azimuthal angle. From here onwards, we shall show the results of eccentricity and triangularity from IP-Glasma using Eq. (8).

III Results and Discussions

In this section, the generated initial eccentricities via ϵnsubscriptitalic-ϵ𝑛\epsilon_{n}italic_ϵ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, and measured final state azimuthal anisotropies via vnsubscript𝑣𝑛v_{n}italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT (n=1,2𝑛12n=1,~{}2italic_n = 1 , 2) for p–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and O–O collisions at sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV simulated using the IP-Glasma+MUSIC+iSS+UrQMD model, are presented. The centrality selection is performed via geometrical slicing using the impact-parameter distribution obtained from IP-Glasma. Using the conventional definition of centrality, the most central collisions (e.g. 0–10%) are the almost head-on collisions for which the impact parameter values are close to zero, and the number of participant nucleons, Npartsubscript𝑁partN_{\rm part}italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT, is close to the total number of nucleons in both the colliding nuclei.

Refer to caption
Figure 1: Charged particle multiplicity density, dNch/dη|η|<0.5subscriptdelimited-⟨⟩𝑑subscript𝑁ch𝑑𝜂𝜂0.5\langle dN_{\rm ch}/d\eta\rangle_{|\eta|<0.5}⟨ italic_d italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT / italic_d italic_η ⟩ start_POSTSUBSCRIPT | italic_η | < 0.5 end_POSTSUBSCRIPT, normalized to the average number of participating nucleon pairs, Npart/2delimited-⟨⟩subscript𝑁part2\langle N_{\rm part}\rangle/2⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩ / 2, plotted as a function of Npartdelimited-⟨⟩subscript𝑁part\langle N_{\rm part}\rangle⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩ in p–O, and O–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and 7777 TeV, respectively.

Figure 1 shows the charged particle multiplicity density, dNch/dηdelimited-⟨⟩𝑑subscript𝑁ch𝑑𝜂\langle dN_{\rm ch}/d\eta\rangle⟨ italic_d italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT / italic_d italic_η ⟩, at midrapidity, |η|<0.5𝜂0.5|\eta|<0.5| italic_η | < 0.5, normalized to the average number of participating nucleon pairs, Npart/2delimited-⟨⟩subscript𝑁part2\langle N_{\rm part}\rangle/2⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩ / 2, plotted as a function of Npartdelimited-⟨⟩subscript𝑁part\langle N_{\rm part}\rangle⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩ in p–O and O–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 and 7777 TeV, respectively, using the hybrid model used in this work. The presence of α𝛼\alphaitalic_α-clusters in 16O yields more charged particles towards high-Npartsubscript𝑁partN_{\rm part}italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT, and significantly lower yield in low-Npartsubscript𝑁partN_{\rm part}italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT as compared to the same numbers from the collisions of Woods-Saxon type 16O nuclei in O–O collisions. This is understood as a fact that the α𝛼\alphaitalic_α-cluster density profile samples the nucleons inside a tight radius, making the nuclear geometry more compact than the Woods-Saxon type sampling, which has an elongated, smooth tail in its probability distribution that can go up to large radial distances. Therefore, more matter is squeezed up at a shorter distance from the center of the nucleus for the α𝛼\alphaitalic_α-clustered density profile than the Woods-Saxon type profile. This possibly leads to a higher Ncolldelimited-⟨⟩subscript𝑁coll\langle N_{\rm coll}\rangle⟨ italic_N start_POSTSUBSCRIPT roman_coll end_POSTSUBSCRIPT ⟩ towards the central collisions (high-Npartsubscript𝑁partN_{\rm part}italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT) and explains the observed higher yield than the Woods-Saxon case. In p–O collisions, we see a slightly different trend. Here, dNch/dη/(Npart/2)delimited-⟨⟩𝑑subscript𝑁ch𝑑𝜂delimited-⟨⟩subscript𝑁part2\langle dN_{\rm ch}/d\eta\rangle/(\langle N_{\rm part}\rangle/2)⟨ italic_d italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT / italic_d italic_η ⟩ / ( ⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩ / 2 ) for α𝛼\alphaitalic_α-cluster case is higher for the intermediate-Npartdelimited-⟨⟩subscript𝑁part\langle N_{\rm part}\rangle⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩ (midcentral collisions). This is because, in the α𝛼\alphaitalic_α-cluster profile, most of the matter is concentrated near the RMS radius of the α𝛼\alphaitalic_α-particle, while the center is mostly empty, unlike the Woods-Saxon profile, where the nuclear density is higher at the center. Thus, p–O collisions near mid-central class lead to a higher Ncollsubscript𝑁collN_{\rm coll}italic_N start_POSTSUBSCRIPT roman_coll end_POSTSUBSCRIPT in the clustered nuclear profile, while the central p–O collisions with clustered structure of Oxygen (high-Npartdelimited-⟨⟩subscript𝑁part\langle N_{\rm part}\rangle⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩) have relatively smaller yield compared to the Woods-Saxon profile. Interestingly, the dNch/dη/(Npart/2)delimited-⟨⟩𝑑subscript𝑁ch𝑑𝜂delimited-⟨⟩subscript𝑁part2\langle dN_{\rm ch}/d\eta\rangle/(\langle N_{\rm part}\rangle/2)⟨ italic_d italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT / italic_d italic_η ⟩ / ( ⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩ / 2 ) of O–O for both nuclear profiles shows a qualitative sharp rise towards Npart2Aless-than-or-similar-tosubscript𝑁part2𝐴N_{\rm part}\lesssim 2Aitalic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ≲ 2 italic_A, where A𝐴Aitalic_A is the mass number of the colliding nuclei. In Ref. ALICE:2018cpu , it is shown that for a specific Npartsubscript𝑁partN_{\rm part}italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT, the value of dNch/dη/(Npart/2)delimited-⟨⟩𝑑subscript𝑁ch𝑑𝜂delimited-⟨⟩subscript𝑁part2\langle dN_{\rm ch}/d\eta\rangle/(\langle N_{\rm part}\rangle/2)⟨ italic_d italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT / italic_d italic_η ⟩ / ( ⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩ / 2 ) in Xe–Xe is higher as compared to Pb–Pb collisions. This indicates that the number of binary collisions in Xe–Xe is higher than Pb–Pb for similar values of Npartsubscript𝑁partN_{\rm part}italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ALICE:2018cpu ; ALICE:2015juo . Similarly, in Fig. 1, a higher value of dNch/dη/(Npart/2)delimited-⟨⟩𝑑subscript𝑁ch𝑑𝜂delimited-⟨⟩subscript𝑁part2\langle dN_{\rm ch}/d\eta\rangle/(\langle N_{\rm part}\rangle/2)⟨ italic_d italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT / italic_d italic_η ⟩ / ( ⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩ / 2 ) in p–O collisions than O-O near Npart6similar-to-or-equalsdelimited-⟨⟩subscript𝑁part6\langle N_{\rm part}\rangle\simeq 6⟨ italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT ⟩ ≃ 6 for both the nuclear density profiles is also attributed to a higher Ncolldelimited-⟨⟩subscript𝑁coll\langle N_{\rm coll}\rangle⟨ italic_N start_POSTSUBSCRIPT roman_coll end_POSTSUBSCRIPT ⟩ in p–O collisions as compared to O–O collisions.

Refer to caption
Refer to caption
Figure 2: Upper panel shows the average eccentricity and triangularity as a function of impact-parameter based centrality class (%) for p–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV (left) and O–O collisions at sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV (right) for Woods-Saxon and αlimit-from𝛼\alpha-italic_α -clustered nuclear density profiles, using IPGlasma. The ratios of ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ and ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ from Woods-Saxon to αlimit-from𝛼\alpha-italic_α -clustered nuclear density profile are shown in the lower panel.

III.1 Initial spatial anisotropy

Figure 2 shows the collision centrality dependence of IP-Glasma generated initial geometrical eccentricities (ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ and ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩) in p–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV (left) and O–O collisions at sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV (right), with both Woods-Saxon and α𝛼\alphaitalic_α-clustered type nuclear density for 16O. The bottom panels show the ratio of eccentricities of the same order between Woods-Saxon and α𝛼\alphaitalic_α-clustered density profiles.

In case of p–O collisions, ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ increases from central to peripheral collisions, for both Woods-Saxon and α𝛼\alphaitalic_α-cluster type density profiles. The value of ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ towards the peripheral collisions is around 25%percent2525\%25 % higher than the most central p–O collisions for both types of nuclear density profiles. Although both the density profiles show similar trends for the centrality dependence of ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩, the values of ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ from α𝛼\alphaitalic_α-cluster type density profile dominate over the Woods-Saxon density profile across all the centrality bins. A similar centrality dependence is also observed for ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩, with α𝛼\alphaitalic_α-cluster type density profile dominating over the Woods-Saxon density profile across all the centrality bins, except towards the most peripheral case, where the values of ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ from both type of density profiles converge. This behavior is also represented in the bottom ratio plot of the left panel, where the ratio is less than one for both ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ and ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩. Clearly, ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ is quantitatively greater than ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ for p–O collisions, consistent with the observations from heavy-ion collisions such as p–Pb and Pb–Pb collisions ALICE:2019zfl ; ALICE:2016ccg .

In the right panel of Figure 2 O–O collisions, involving Woods-Saxon density profile, ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ shows an increasing trend from central to peripheral collisions; however, this increase is steadier than in p–O collisions and it leads to a rise of more than 40%percent4040\%40 % of its value towards the peripheral collisions compared to the most central case. On the other hand, ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ for the α𝛼\alphaitalic_α-cluster case dominates over the Woods-Saxon profile from central to mid-central collisions, yet approaches similar values towards the peripheral case. Thus, a noticeable nuclear density profile dependence of ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ is observed, with the eccentricity in the 0–70% centrality class being clearly higher for α𝛼\alphaitalic_α-cluster profile than that for the Woods-Saxon nuclear density profile Prasad:2024ahm . Further, ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ for O–O collisions increases from central to peripheral collisions for the Woods-Saxon profile as in p–O collisions, while for the case of α𝛼\alphaitalic_α-cluster profile, it shows a decreasing-and-saturating trend with the centrality. In the most central O–O collisions, ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ from α𝛼\alphaitalic_α-clustered nuclear density profile is observed to be \approx 30%percent3030\%30 % higher than that of the Woods-Saxon case. This feature is also visible in the AMPT results for O–O collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV Behera:2023nwj , and should arise as a consequence of the overlap of two triangular sides of the colliding tetrahedral oxygen nuclei with the α𝛼\alphaitalic_α-clustered nuclear density profile. The value of ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ from Woods-Saxon dominates over the α𝛼\alphaitalic_α-clustered profile in the off-central O–O collisions, and this can be quantitatively analyzed from the bottom panel of the right plot of Fig. 2.

III.2 Anisotropic flow coefficients

Refer to caption
Refer to caption
Figure 3: Elliptic and triangular flow calculated using the two-particle Q-cumulant method as a function of collision centrality for p–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV (left) and O–O collisions at sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV (right) from the IP-Glasma + MUSIC + iSS + UrQMD framework. Results include both Woods-Saxon and αlimit-from𝛼\alpha-italic_α -clustered type O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nuclei. The ratio of v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{\rm 2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } and v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{\rm 3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } from Woods-Saxon to αlimit-from𝛼\alpha-italic_α -cluster density profile is shown in the lower panels.

Using the two-particle Q-cumulant method, we calculated the elliptic and triangular flow for all charged particles in |η|<𝜂absent|\eta|<| italic_η | < 2.5, in p–O and O–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV respectively. A pseudorapidity gap of |Δη|>1.0Δ𝜂1.0|\Delta\eta|>1.0| roman_Δ italic_η | > 1.0 is imposed between the particle pairs to remove short-range jet-like correlations, if any. Note: In addition to the pseudorapidity gap, |Δη|>1Δ𝜂1|\Delta\eta|>1| roman_Δ italic_η | > 1, estimation with |Δη|>2Δ𝜂2|\Delta\eta|>2| roman_Δ italic_η | > 2 i.e. vn{2,|Δη|>2}subscript𝑣n2Δ𝜂2v_{\rm n}\{2,|\Delta\eta|>2\}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 2 } was also performed, so as to ensure maximum reduction of non-flow contributions. Since the results showed little or no difference from the estimated vn{2,|Δη|>1}subscript𝑣n2Δ𝜂1v_{\rm n}\{2,|\Delta\eta|>1\}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1 }, we resort to estimation with |Δη|>1Δ𝜂1|\Delta\eta|>1| roman_Δ italic_η | > 1.

In Fig. 3, both v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } and v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } as a function of collision centrality are shown, for both Woods-Saxon and α𝛼\alphaitalic_α-cluster type O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nuclei in p–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and O–O collisions at sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV, from the IP-Glasma + MUSIC + iSS + UrQMD framework. As one can see from the left plot of Fig. 3, the nuclear density profile dependence for v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } and v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } is almost negligible in p–O collisions. For both nuclear density profiles, v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } drops gradually from the most central to peripheral p–O collisions, with the α𝛼\alphaitalic_α-cluster profile showing slightly higher values than the Woods-Saxon profile in the 10–20% centrality class, appearing as a small bump-like structure. On the other hand, v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } shows no significant centrality dependence, and the trends for both Woods-Saxon and α𝛼\alphaitalic_α-cluster profile cases almost overlap with one another.

On the contrary, for O–O collisions, both v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } and v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } have strong dependence on the choice of nuclear density profiles. v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } for the Woods-Saxon case has a smooth increase from central to midcentral collisions and then a relatively gradual decrease towards the peripheral collisions. For the O–O collisions with α𝛼\alphaitalic_α-clustered profile for O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nuclei, the initial rise until midcentral collisions and the following drop towards peripheral collisions are much steeper compared to the Woods-Saxon case. In fact, we see in the α𝛼\alphaitalic_α-cluster case that the v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } attains a peak at 10–20% centrality class (\approx 30% higher than the corresponding v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT from Woods-Saxon profile). This is also similar to the small bump observed in the case of p–O collisions for the same centrality of collisions. However, as one moves from mid-central to peripheral O–O collisions, the magnitude of v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } steeply falls to almost half of its peak value, with v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } from Woods-Saxon case starting to dominate over the elliptic flow from the α𝛼\alphaitalic_α-cluster profile case.

In addition, v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } has a smooth decrease from the central to peripheral O–O collisions for both types of nuclear density profiles studied in this work; the α𝛼\alphaitalic_α-cluster case has a higher value of v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } for the most central collisions compared to the same from the Woods-Saxon case. However, for the rest of the centrality bins, the Woods-Saxon type profile leads the value of v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 }.

The major contribution to the nuclear density profile dependence of vnsubscript𝑣nv_{\rm n}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT arises from the initial state eccentricities. For instance, v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT in the (10–20%) centrality and v3subscript𝑣3v_{3}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT in the (0–10%) centrality class for the α𝛼\alphaitalic_α-clustered profile in O–O collisions are reflections of the corresponding ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ and ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩. However, the effect of the centrality dependence of ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ and ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ is not very well carried forward to the final state, beyond mid-central collisions, owing to the smaller size and lifetime of the system formed. However, for the case of O–O collisions, the differences in the initial spatial anisotropy between the Woods-Saxon and α𝛼\alphaitalic_α-cluster profile propagate nicely to the final state azimuthal anisotropy, as visible from the bottom ratio panels of Fig. 2 and Fig. 3.

In a nutshell, the distinction between the α𝛼\alphaitalic_α-clustered and Woods-Saxon nuclear density profiles in p–O collisions is not as prominent as it is for the O–O collisions in the measurements of anisotropic flow coefficients, i.e., v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and v3subscript𝑣3v_{3}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. These differences might arise due to the difference in their system size, since p–O collisions are asymmetric, and form a smaller system as compared to O–O collisions. In addition, proton is not an ideal probe to capture the differences in the nuclear density profiles of 16O, which one should generally expect from a much bigger system in O–O collisions. This is interesting, since our expectation was that the smaller-sized bombarding proton would provide better resolution.

III.3 Multiplicity dependence of vnsubscript𝑣nv_{\rm n}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT and vnsubscript𝑣nv_{\rm n}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT/ϵndelimited-⟨⟩subscriptitalic-ϵn\langle\epsilon_{\rm n}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT ⟩

Refer to caption
Refer to caption
Figure 4: vn{2,|Δη|>1.0}subscript𝑣n2Δ𝜂1.0v_{\rm n}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } (left panel) and vn{2,|Δη|>1.0}subscript𝑣n2Δ𝜂1.0v_{\rm n}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 }/ϵndelimited-⟨⟩subscriptitalic-ϵ𝑛\langle\epsilon_{n}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ⟩ (right panel) as a function of average charged-particle multiplicity (Nch|η|<2.5subscriptdelimited-⟨⟩subscript𝑁ch𝜂2.5\langle N_{\rm ch}\rangle_{|\eta|<2.5}⟨ italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT ⟩ start_POSTSUBSCRIPT | italic_η | < 2.5 end_POSTSUBSCRIPT) measured in |η|<2.5𝜂2.5|\eta|<2.5| italic_η | < 2.5 for p–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and O–O collisions at sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV using IPGlasma + MUSIC + iSS + UrQMD model, for Woods-Saxon and αlimit-from𝛼\alpha-italic_α -cluster density profiles of O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nuclei.

One of the major motivations for the future p–O and O–O collisions at the LHC comes from the fact that these collision systems form a perfect system size to fill the multiplicity gap between the collision systems, pp, p–Pb, and Pb–Pb. Or in other words, studying p–O and O–O collisions (where produced multiplicity is expected to be intermediate to that of other systems mentioned above) helps us in understanding how the signatures of hydrodynamic behaviour (or any other signatures of QGP) undergo a transition as we move down from high to low multiplicity, analogously, large to small systems Brewer:2021kiv . It is already quite well known that the particle multiplicity plays a crucial role in transforming the initial eccentricities to the final-state flow. Compared to a low multiplicity event, a collision achieving a larger multiplicity would naturally imply that the hydrodynamic phase during its evolution is longer, which results in an efficient (complete) transformation of initial spatial anisotropies to final-state momentum anisotropies. As we observed in Fig. 3, O–O collisions show significant dependence of vnsubscript𝑣nv_{\rm n}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT on the initial clustering, and the initial-state effects are reflected better in O–O than in p–O collisions. In this context, studying ϵndelimited-⟨⟩subscriptitalic-ϵn\langle\epsilon_{\rm n}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT ⟩ and vnsubscript𝑣nv_{\rm n}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT for their charged particle multiplicity dependence would help us discern where the system behaviour changes, in turn enabling us to quantify the hydrodynamic limit.

Shown in the left plot of Fig. 4 is the elliptic and triangular flow as a function of average charged-particle multiplicity in the pseudorapidity range |η|<2.5𝜂2.5|\eta|<2.5| italic_η | < 2.5 and pT>0.3subscript𝑝T0.3p_{\rm T}>0.3italic_p start_POSTSUBSCRIPT roman_T end_POSTSUBSCRIPT > 0.3 GeV/c𝑐citalic_c (Nch|η|<2.5subscriptdelimited-⟨⟩subscript𝑁ch𝜂2.5\langle N_{\rm ch}\rangle_{|\eta|<2.5}⟨ italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT ⟩ start_POSTSUBSCRIPT | italic_η | < 2.5 end_POSTSUBSCRIPT), for p–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and O–O collisions at sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV, generated using IP-Glasma + MUSIC + iSS + UrQMD framework. Since the Nchdelimited-⟨⟩subscript𝑁ch\langle N_{\rm ch}\rangle⟨ italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT ⟩ is calculated based on the impact parameter-based event classes, Fig. 4 is visually the mirror image of Fig. 3. However, the purpose of Fig. 4 is to understand the multiplicity dependence of v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } and v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } for two different collision systems i.e. p–O and O–O, for both α𝛼\alphaitalic_α-clustered and Woods-Saxon nuclear density profiles of colliding O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O, to be in line with the experimental results which are presented as a function of multiplicity.

As can be seen, v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } has the maximum value at Nchsimilar-to-or-equalsdelimited-⟨⟩subscript𝑁chabsent\langle N_{\rm ch}\rangle\simeq⟨ italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT ⟩ ≃ 600 for O–O collisions involving α𝛼\alphaitalic_α-clustered nuclear density profile, while this sharp peak is not observed in case of Woods-Saxon profile for O–O, as already discussed earlier. If compared with the results in Ref. ALICE:2019zfl , v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } achieved by the (10-20%) central O–O collisions involving compact α𝛼\alphaitalic_α-clusters, is comparable to the elliptic flow attained in mid-central Pb–Pb collisions. Now, as the particle multiplicity in the desired pseudorapidity (η𝜂\etaitalic_η) range falls down by an order for O–O collisions (Nchsimilar-to-or-equalsdelimited-⟨⟩subscript𝑁chabsent\langle N_{\rm ch}\rangle\simeq⟨ italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT ⟩ ≃ 75), the v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } is reduced by 40%. Interestingly, even in the highest multiplicity p–O collisions with α𝛼\alphaitalic_α-clustered O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nuclei (where Nchsimilar-to-or-equalsdelimited-⟨⟩subscript𝑁chabsent\langle N_{\rm ch}\rangle\simeq⟨ italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT ⟩ ≃ 100), we see a tiny bump like structure in the trend for v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 }, similar to the observation in O–O collisions with α𝛼\alphaitalic_α-cluster profiles. Additionally, in the case of the Woods-Saxon profile, the observation of a gradual decrease of v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } from high to low multiplicity classes, with no abrupt jumps, is common for both O–O and p–O collisions. In the case of triangular flow, v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } obtained in high to intermediate multiplicity p–O collisions is very similar to that obtained in the lowest multiplicity O–O collisions, which is expected from Ref. ALICE:2019zfl . Though we see a moderate dependence on nuclear density profiles for v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } in O–O collisions, there is no significant influence of α𝛼\alphaitalic_α-clustering on v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } in the case of p–O collisions.

Scaling vnsubscript𝑣nv_{\rm n}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT by ϵndelimited-⟨⟩subscriptitalic-ϵn\langle\epsilon_{\rm n}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT ⟩ is a quantified way to understand how much of the initial spatial anisotropy is converted to the final state momentum anisotropy and hence is believed to probe the transport properties of the medium, and the applicability of hydrodynamic models to the system under study. In the right plot of Fig. 4, we thus present v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT/ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ and v3subscript𝑣3v_{3}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT/ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ as a function of Nch|η|<2.5subscriptdelimited-⟨⟩subscript𝑁ch𝜂2.5\langle N_{\rm ch}\rangle_{|\eta|<2.5}⟨ italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT ⟩ start_POSTSUBSCRIPT | italic_η | < 2.5 end_POSTSUBSCRIPT for p–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and O–O collisions at sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV, generated using IP-Glasma + MUSIC + iSS + UrQMD framework, for Woods-Saxon and α𝛼\alphaitalic_α-cluster density profiles of O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nucleus. The scaled ratios now reveal an interesting trend: the increase of v3subscript𝑣3v_{3}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT/ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ with Nch|η|<2.5subscriptdelimited-⟨⟩subscript𝑁ch𝜂2.5\langle N_{\rm ch}\rangle_{|\eta|<2.5}⟨ italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT ⟩ start_POSTSUBSCRIPT | italic_η | < 2.5 end_POSTSUBSCRIPT experiences a smooth transition from p–O to O–O collisions where the rate of increment seems to be alike for both collision systems. Similarly, v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT/ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ also increases with Nch|η|<2.5subscriptdelimited-⟨⟩subscript𝑁ch𝜂2.5\langle N_{\rm ch}\rangle_{|\eta|<2.5}⟨ italic_N start_POSTSUBSCRIPT roman_ch end_POSTSUBSCRIPT ⟩ start_POSTSUBSCRIPT | italic_η | < 2.5 end_POSTSUBSCRIPT; the slight bump-like structure observed in the trends of v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT in p–O collisions still persists in the ratio v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT/ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩, while it is smoothened out in the case of O–O collisions. However, the nuclear density profile dependence is no longer seen to remain once scaling of vnsubscript𝑣𝑛v_{n}italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT with ϵndelimited-⟨⟩subscriptitalic-ϵn\langle\epsilon_{\rm n}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT ⟩ is performed, except for the v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT/ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ case of p–O collisions. This is a testimony that, in this work, the choice of nuclear density profile has little to no effect on the medium formed.

III.4 Impact parameter dependence of vnsubscript𝑣𝑛v_{n}italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT

Refer to caption
Figure 5: v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{\rm 2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } and v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{\rm 3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } as a function of b/rαbsubscriptr𝛼\rm b/\rm r_{\alpha}roman_b / roman_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT (where, rα=1.676subscriptr𝛼1.676\rm r_{\alpha}=1.676roman_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = 1.676 fm) for p–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and O–O collisions at sNN=7subscript𝑠NN7\sqrt{s_{\rm NN}}=7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7 TeV using IP-Glasma + MUSIC + iSS + UrQMD model, for Woods-Saxon and αlimit-from𝛼\alpha-italic_α -cluster density profiles of colliding O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nucleus.

In Figs. 3 and 4, we observed that the effect of clustered structure is mostly highlighted in the high-multiplicity or most central regions. Thus, it is important to quantify the regions as a function of impact parameter (b𝑏bitalic_b) that is capable of highlighting the effects in the final state flow coefficients for the choice of nuclear profile (α𝛼\alphaitalic_α-clustered versus Woods-Saxon). This would help us understand whether the size of the α𝛼\alphaitalic_α-particle (radius of α𝛼\alphaitalic_α-particle, rα=1.676subscriptr𝛼1.676\rm r_{\alpha}=1.676roman_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = 1.676 fm) has any role to play. In Fig. 5, we show vn{2,|Δη|>1.0}subscript𝑣𝑛2Δ𝜂1.0v_{n}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } as a function of impact parameter scaled with the RMS radius of α𝛼\alphaitalic_α-particle (He4superscriptHe4{}^{4}\text{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT He nucleus) (b/rα𝑏subscript𝑟𝛼b/r_{\alpha}italic_b / italic_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT) for both p–O and O–O collisions at sNN=9.61subscript𝑠NN9.61\sqrt{s_{\rm NN}}=9.61square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 9.61 TeV and 7777 TeV, respectively, using IP-Glasma + MUSIC + iSS + UrQMD. Figure 5 would aid in quantitatively conceiving the effect of the clustered structure in the final state flow observables as a function of b/rα𝑏subscript𝑟𝛼b/r_{\alpha}italic_b / italic_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT. Interestingly, in O–O collisions, one finds that the dependence of elliptic and triangular flow on nuclear density profile is maximised near b/rα1similar-to-or-equals𝑏subscript𝑟𝛼1b/r_{\alpha}\simeq 1italic_b / italic_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ≃ 1. Here, v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } near b=rα𝑏subscript𝑟𝛼b=r_{\alpha}italic_b = italic_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT shows a peak like structure for the α𝛼\alphaitalic_α-cluster case and is absent for the Woods-Saxon profile, the effect of which originates from the initial eccentricity, as shown in Fig. 2. Similarly, a higher v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } for b/rα<1𝑏subscript𝑟𝛼1b/r_{\alpha}<1italic_b / italic_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT < 1 is also attributed to the α𝛼\alphaitalic_α-clustered case which is absent for the Woods-Saxon profile. Additionally, in Fig. 5 we observe that, for O–O collisions towards the higher impact parameter values, the Woods-Saxon nuclear profile have larger value of v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } and v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } as compared to the α𝛼\alphaitalic_α-clustered structure, also reflected in the bottom panel where the ratio of Woods-Saxon to α𝛼\alphaitalic_α-clustered structure is larger than one. This is similar to the observations made in the right panel of Fig. 3 and 4, where v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } and v3{2,|Δη|>1.0}subscript𝑣32Δ𝜂1.0v_{3}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } in mid-central and peripheral O–O collisions deviate significantly from that of ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ and ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩, respectively, in Fig. 2. This could be attributed to the combined effects due to the smaller lifetime of the fireball towards the mid-central or peripheral collisions and the difference in the medium response to the evolution of v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT from v3subscript𝑣3v_{3}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Additional contributions could arrive from the large fluctuations of anisotropic flow coefficients due to a smaller number of charged particles. However, due to small particle multiplicity in p–O collisions, no such explicit effects of clustered nuclear structure are observed throughout b/rα𝑏subscript𝑟𝛼b/r_{\alpha}italic_b / italic_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT regions. The variations of vn{2,|Δη|>1.0}subscript𝑣𝑛2Δ𝜂1.0v_{n}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } with the choice of nuclear density profile are well reflected in the bottom ratio panel. Therefore, in brief from Fig. 5, it is clear that the effects of clustered density profile are well observed in the region b/rα1less-than-or-similar-to𝑏subscript𝑟𝛼1b/r_{\alpha}\lesssim 1italic_b / italic_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ≲ 1. The sought-after effects are not visible when the particle multiplicity is small, like in the p–O collisions.

IV SUMMARY

In this study, we have investigated the effect of the clustered nuclear structure of O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nuclei through p–O and O–O collisions at the LHC energies using IP-Glasma + MUSIC + iSS + UrQMD. The final state anisotropic flow coefficients are studied and are compared with the corresponding spatial anisotropies of the initial collision overlap geometry. Our findings are summarized as follows:

  1. 1.

    For both p–O and O–O collision systems, we find that the ϵ2delimited-⟨⟩subscriptitalic-ϵ2\langle\epsilon_{2}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ rises from central to peripheral collisions with a clear dominance of α𝛼\alphaitalic_α-cluster over the Woods-Saxon profile case. Similar is the trend for ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ except for O–O collisions with α𝛼\alphaitalic_α-clustering. Here, the ϵ3delimited-⟨⟩subscriptitalic-ϵ3\langle\epsilon_{3}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⟩ is found to be maximum in the 0–10% centrality class and falls thereafter in mid-central collisions.

  2. 2.

    The centrality dependence of initial spatial anisotropies (ϵndelimited-⟨⟩subscriptitalic-ϵn\langle\epsilon_{\rm n}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT ⟩) is not effectively converted to final-state elliptic and triangular flow, especially in the mid-central to peripheral p–O and O–O collisions, owing to the less dense systems formed in the off-central collisions.

  3. 3.

    The nuclear density profile seems to have little influence on v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and v3subscript𝑣3v_{3}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT in p–O collisions, while it has a noticeable effect in the case of O–O collisions. In spite of this, v2{2,|Δη|>1.0}subscript𝑣22Δ𝜂1.0v_{2}\{2,|\Delta\eta|>1.0\}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { 2 , | roman_Δ italic_η | > 1.0 } is found to achieve its maximum in the (10–20%) centrality class, for both p–O and O–O collisions involving α𝛼\alphaitalic_α-clustered O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O.

  4. 4.

    Once vnsubscript𝑣nv_{\rm n}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT is scaled with the corresponding ϵndelimited-⟨⟩subscriptitalic-ϵn\langle\epsilon_{\rm n}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT ⟩, the nuclear profile dependence vanishes completely for O–O collisions. This scaling also brings the multiplicity-dependent curve of vnsubscript𝑣nv_{\rm n}italic_v start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT/ϵndelimited-⟨⟩subscriptitalic-ϵn\langle\epsilon_{\rm n}\rangle⟨ italic_ϵ start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT ⟩ for p–O and O–O collisions to a single continuous line.

  5. 5.

    The effects of α𝛼\alphaitalic_α-clustering in O–O collisions are observed to manifest well in the region b/rα1less-than-or-similar-to𝑏subscript𝑟𝛼1b/r_{\rm\alpha}\lesssim 1italic_b / italic_r start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ≲ 1, therefore it is comparable with the size of the 4He.

In this work, we present a systematic study of how the α𝛼\alphaitalic_α-clustered nuclear structure of the colliding O16superscriptO16{}^{16}\rm Ostart_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O nucleus in collision systems ranging from p–O to O–O collisions impacts the final-state medium anisotropy. This study can further be useful as a hydrodynamic prediction for future experimental investigations of p–O and O–O collisions at the LHC. A comparison with experimental data would help constrain the nuclear density profile for the oxygen nuclei and aid in tuning other models.

Acknowledgement

AMKR acknowledges the doctoral fellowships from the DST INSPIRE program of the Government of India. SP acknowledges the doctoral fellowship from the UGC, Government of India. RS sincerely acknowledges the DAE-DST, Government of India funding under the mega-science project – “Indian participation in the ALICE experiment at CERN” bearing Project No. SR/MF/PS-02/2021-IITI (E-37123). NM is supported by the Academy of Finland through the Center of Excellence in Quark Matter with Grant No. 346328. GGB gratefully acknowledges the Hungarian National Research, Development and Innovation Office (NKFIH) under Contracts No. OTKA K135515, No. NKFIH NEMZ_KI-2022-00031, “2024-1.2.5-TET-2024-00022” and Wigner Scientific Computing Laboratory (WSCLAB, the former Wigner GPU Laboratory). The authors gratefully acknowledge the MoU between IIT Indore and Wigner Research Centre for Physics (WRCP), Hungary, for the techno-scientific international cooperation.

References

  • (1) S. Acharya et al. [ALICE], Eur. Phys. J. C 84, 813 (2024).
  • (2) U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013).
  • (3) J. Rafelski and B. Muller, Phys. Rev. Lett. 48, 1066 (1982) [erratum: Phys. Rev. Lett. 56, 2334 (1986)].
  • (4) S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996).
  • (5) T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).
  • (6) M. Gyulassy, P. Levai and I. Vitev, Phys. Rev. Lett. 85, 5535 (2000).
  • (7) M. Gyulassy, P. Levai and I. Vitev, Nucl. Phys. B 594, 371 (2001).
  • (8) P. Levai, G. Papp, G. I. Fai, M. Gyulassy, G. G. Barnafoldi, I. Vitev and Y. Zhang, Nucl. Phys. A 698, 631 (2002).
  • (9) J. Adam et al. [ALICE], Nature Phys. 13, 535 (2017).
  • (10) S. Acharya et al. [ALICE], [arXiv:2411.09323 [nucl-ex]].
  • (11) J. Brewer, A. Mazeliauskas and W. van der Schee, [arXiv:2103.01939 [hep-ph]].
  • (12) R. Katz, C. A. G. Prado, J. Noronha-Hostler and A. A. P. Suaide, Phys. Rev. C 102, 041901 (2020).
  • (13) R. Scaria, S. Deb, C. R. Singh and R. Sahoo, Phys. Lett. B 844, 138118 (2023).
  • (14) G. Gamow, Constitution of Atomic Nuclei and Radioactivity, International series of monographs on physics PCMI collection, Clarendon Press (1931).
  • (15) J. A. Wheeler, Phys. Rev. 52, 1083 (1937).
  • (16) R. Bijker and F. Iachello, Phys. Rev. Lett. 112, 152501 (2014).
  • (17) X. B. Wang, G. X. Dong, Z. C. Gao, Y. S. Chen and C. W. Shen, Phys. Lett. B 790, 498 (2019).
  • (18) W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai and G. Q. Zhang, Phys. Rev. Lett. 113, 032506 (2014).
  • (19) J. He, W. B. He, Y. G. Ma and S. Zhang, Phys. Rev. C 104, 044902 (2021).
  • (20) T. Otsuka, T. Abe, T. Yoshida, Y. Tsunoda, N. Shimizu, N. Itagaki, Y. Utsuno, J. Vary, P. Maris and H. Ueno, Nature Commun. 13, 2234 (2022).
  • (21) G. Giacalone, J. Jia and C. Zhang, Phys. Rev. Lett. 127, 242301 (2021).
  • (22) M. R. Haque, M. Nasim and B. Mohanty, J. Phys. G 46, 085104 (2019).
  • (23) S. Acharya et al. (ALICE Collaboration), JHEP 10, 152 (2021).
  • (24) S. Acharya et al. (ALICE Collaboration), Phys. Lett. B 784, 82 (2018).
  • (25) A. M. Sirunyan et al. (CMS Collaboration), Phys. Rev. C 100, 044902 (2019).
  • (26) G. Aad et al. (ATLAS Collaboration), Phys. Rev. C 101, 024906 (2020).
  • (27) L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 115, no.22, 222301 (2015).
  • (28) C. Aidala et al. (PHENIX Collaboration), Nature Phys. 15, 214 (2019).
  • (29) D. Behera, S. Deb, C. R. Singh and R. Sahoo, Phys. Rev. C 109, 014902 (2024).
  • (30) D. Behera, S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 108, 054022 (2023).
  • (31) U. A. Acharya et al. (PHENIX Collaboration), Phys. Rev. C 105, 024901 (2022).
  • (32) M. I. Abdulhamid et al. (STAR Collaboration), Phys. Rev. Lett. 130, 242301 (2023).
  • (33) (STAR Collaboration), [arXiv:2312.07464 [nucl-ex]].
  • (34) M. Rybczyński and W. Broniowski, Phys. Rev. C 100, 064912 (2019).
  • (35) M. D. Sievert and J. Noronha-Hostler, Phys. Rev. C 100, 024904 (2019).
  • (36) S. Huang, Z. Chen, J. Jia and W. Li, Phys. Rev. C 101, 021901 (2020).
  • (37) N. Summerfield, B. N. Lu, C. Plumberg, D. Lee, J. Noronha-Hostler and A. Timmins, Phys. Rev. C 104, L041901 (2021).
  • (38) A. Huss, A. Kurkela, A. Mazeliauskas, R. Paatelainen, W. van der Schee and U. A. Wiedemann, Phys. Rev. C 103, 054903 (2021).
  • (39) B. G. Zakharov, JHEP 09, 087 (2021).
  • (40) C. Ding, L. G. Pang, S. Zhang and Y. G. Ma, Chin. Phys. C 47, 024105 (2023).
  • (41) Y. Z. Wang, S. Zhang and Y. G. Ma, Phys. Lett. B 831, 137198 (2022).
  • (42) M. Rybczyński, M. Piotrowska and W. Broniowski, Phys. Rev. C 97, 034912 (2018).
  • (43) A. Svetlichnyi, S. Savenkov, R. Nepeivoda and I. Pshenichnov, MDPI Physics 5, 381 (2023).
  • (44) G. Giacalone, et al. [arXiv:2405.20210 [nucl-th]].
  • (45) C. Zhang, J. Chen, G. Giacalone, S. Huang, J. Jia and Y. G. Ma, [arXiv:2404.08385 [nucl-th]].
  • (46) A. M. K. R, S. Prasad, N. Mallick and R. Sahoo, [arXiv:2407.03823 [nucl-th]].
  • (47) S. Prasad, N. Mallick, R. Sahoo and G. G. Barnaföldi, Phys. Lett. B 860, 139145 (2025).
  • (48) S. H. Lim, J. Carlson, C. Loizides, D. Lonardoni, J. E. Lynn, J. L. Nagle, J. D. Orjuela Koop and J. Ouellette, Phys. Rev. C 99, 044904 (2019).
  • (49) D. Behera, N. Mallick, S. Tripathy, S. Prasad, A. N. Mishra and R. Sahoo, Eur. Phys. J. A 58, 175 (2022).
  • (50) Y. A. Li, S. Zhang and Y. G. Ma, Phys. Rev. C 102, 054907 (2020).
  • (51) B. Schenke, C. Shen and P. Tribedy, Phys. Rev. C 102, 044905 (2020).
  • (52) P. Bozek, W. Broniowski, E. Ruiz Arriola and M. Rybczynski, Phys. Rev. C 90, 064902 (2014).
  • (53) W. Broniowski and E. Ruiz Arriola, Phys. Rev. Lett. 112, 112501 (2014).
  • (54) G. Giacalone, et al. [arXiv:2402.05995 [nucl-th]].
  • (55) S. McDonald, C. Shen, F. Fillion-Gourdeau, S. Jeon and C. Gale, Phys. Rev. C 95, 064913 (2017).
  • (56) B. Schenke, P. Tribedy and R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012).
  • (57) B. Schenke, P. Tribedy and R. Venugopalan, Phys. Rev. C 86, 034908 (2012).
  • (58) L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994).
  • (59) L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 3352 (1994).
  • (60) J. Bartels, K. J. Golec-Biernat and H. Kowalski, Phys. Rev. D 66, 014001 (2002).
  • (61) H. Kowalski and D. Teaney, Phys. Rev. D 68, 114005 (2003).
  • (62) A. Krasnitz and R. Venugopalan, Nucl. Phys. B 557, 237 (1999).
  • (63) A. Krasnitz and R. Venugopalan, Phys. Rev. Lett. 84, 4309 (2000).
  • (64) A. Krasnitz, Y. Nara and R. Venugopalan, Phys. Rev. Lett. 87, 192302 (2001).
  • (65) A. Krasnitz and R. Venugopalan, Phys. Rev. Lett. 86, 1717 (2001).
  • (66) B. Schenke, S. Jeon and C. Gale, Phys. Rev. C 82, 014903 (2010).
  • (67) B. Schenke, S. Jeon and C. Gale, Phys. Rev. Lett. 106, 042301 (2011).
  • (68) J. F. Paquet, C. Shen, G. S. Denicol, M. Luzum, B. Schenke, S. Jeon and C. Gale, Phys. Rev. C 93, 044906 (2016).
  • (69) P. Huovinen and P. Petreczky, Nucl. Phys. A 837, 26 (2010).
  • (70) A. Kurganov and E. Tadmor, J. Comput. Phys. 160, 241 (2000).
  • (71) S. Jeon and U. Heinz, Int. J. Mod. Phys. E 24, 1530010 (2015).
  • (72) C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, Comput. Phys. Commun. 199, 61 (2016).
  • (73) G. S. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke and C. Shen, Phys. Rev. C 98, 034916 (2018).
  • (74) F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).
  • (75) K. Dusling, G. D. Moore and D. Teaney, Phys. Rev. C 81, 034907 (2010).
  • (76) S. A. Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L. Bravina, C. Ernst, L. Gerland, M. Hofmann, S. Hofmann and J. Konopka, et al. Prog. Part. Nucl. Phys. 41, 255 (1998).
  • (77) M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber and H. Stoecker, et al. J. Phys. G 25, 1859 (1999).
  • (78) A. Bilandzic, R. Snellings and S. Voloshin, Phys. Rev. C 83, 044913 (2011).
  • (79) Y. Zhou, X. Zhu, P. Li and H. Song, Phys. Rev. C 91, 064908 (2015).
  • (80) S. Prasad, N. Mallick, S. Tripathy and R. Sahoo, Phys. Rev. D 107, 074011 (2023).
  • (81) H. Petersen, G. Y. Qin, S. A. Bass and B. Muller, Phys. Rev. C 82, 041901 (2010).
  • (82) B. Schenke, P. Tribedy and R. Venugopalan, Nucl. Phys. A 926, 102 (2014).
  • (83) S. Acharya et al. [ALICE], Phys. Lett. B 790, 35 (2019).
  • (84) J. Adam et al. [ALICE], Phys. Rev. Lett. 116, 222302 (2016).
  • (85) S. Acharya et al. [ALICE], Phys. Rev. Lett. 123, 142301 (2019).
  • (86) J. Adam et al. [ALICE], Phys. Rev. Lett. 116, 132302 (2016).