License: CC BY 4.0
arXiv:2506.00890v1 [math.MG] 01 Jun 2025

Bounded geometry version of property A

V. Manuilov Moscow Center for Fundamental and Applied Mathematics, Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia manuilov@mech.math.msu.su
Abstract.

For uniformly dicrete metric spaces without bounded geometry we suggest a modified version of property A based on metrics of bounded geometry greater than the given metric. We show that this version still implies coarse embeddability in Hilbert spaces, and that some examples of non-property A spaces of unbounded geometry satisfy this version. We also relate this version of property A to our version of uniform Roe algebras for spaces without bounded geometry and introduce an appropriate equivalence relation.

Introduction

Bounded geometry for discrete metric spaces is a useful property in coarse geometry. For Rips complexes of metric spaces it means their finite dimension. But many natural examples of metric spaces do not have bounded geometry, e.g. Cayley graphs of infinitely generated groups or some box spaces. Making in such spaces the distances between points much greater, we may obtain metrics of bounded geometry, and we suggest to use these metrics of bounded geometry to get information about the original metric. For Rips complexes this approach reduces to study of finitedimensional approximations instead of the complex itself. In [3] we have used this approach to define a bounded geometry version for the uniform Roe algebras. Here we use it to expose what we think should be a more suitable version of property A of Guoliang Yu for spaces without bounded geometry, which we denote by ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A and call the bounded geometry version of property A.

P. Nowak in [4] has shown that the unbounded geometry space βŠ”iβˆˆβ„•(β„€/2⁒℀)isubscriptsquare-union𝑖ℕsuperscriptβ„€2℀𝑖\sqcup_{i\in\mathbb{N}}(\mathbb{Z}/2\mathbb{Z})^{i}βŠ” start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT ( blackboard_Z / 2 blackboard_Z ) start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT does not have property A, although should be viewed as β€˜amenable’ in any reasonable sense. In particular, it admits a coarse embedding in a Hilbert space. Property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A coincides with property A on bounded geometry spaces and includes more spaces without bounded geometry, in particular, the Nowak’s example. Also property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A implies coarse embeddability in a Hilbert space by the standard argument with negative type kernels, thus justifying the approach based on bounded geometry metrics.

Unlike spaces with bounded geometry, general metric spaces may be coarsely equivalent, but still very different. For example, an infinite space of finite diameter is coarsely equivalent to a single point, but the uniform Roe algebra for such space is even not an exact Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-algebra. Considering on a metric space (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) all metrics of bounded geometry greater than d𝑑ditalic_d gives a more subtle structure on (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) and allows to distinguish such spaces using ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-coarse equivalence relation. In particular, we show that if (X,dX)𝑋subscript𝑑𝑋(X,d_{X})( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,dY)π‘Œsubscriptπ‘‘π‘Œ(Y,d_{Y})( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) are ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-coarsely equivalent and one of them has property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A then the other one has this property too.

We also establish relations between this structure and our version of the uniform Roe algebras for uniformly discrete metric spaces.

1. Notation and property A

Let X=(X,d)𝑋𝑋𝑑X=(X,d)italic_X = ( italic_X , italic_d ) be a discrete metric space. We write BSd⁒(x)={y∈X:d⁒(x,y)≀S}subscriptsuperscript𝐡𝑑𝑆π‘₯conditional-set𝑦𝑋𝑑π‘₯𝑦𝑆B^{d}_{S}(x)=\{y\in X:d(x,y)\leq S\}italic_B start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_x ) = { italic_y ∈ italic_X : italic_d ( italic_x , italic_y ) ≀ italic_S } for the ball of radius R𝑅Ritalic_R with respect to the metric d𝑑ditalic_d centered at xπ‘₯xitalic_x (as we will consider several metrics on X𝑋Xitalic_X, we specify the metric as a superscript), and, for AβŠ‚X𝐴𝑋A\subset Xitalic_A βŠ‚ italic_X, we denote by |A|𝐴|A|| italic_A | the number of points in A𝐴Aitalic_A. Recall that (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) has bounded geometry if for any R>0𝑅0R>0italic_R > 0 there exists Nβˆˆβ„•π‘β„•N\in\mathbb{N}italic_N ∈ blackboard_N such that |BRd⁒(x)|≀Nsubscriptsuperscript𝐡𝑑𝑅π‘₯𝑁|B^{d}_{R}(x)|\leq N| italic_B start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_x ) | ≀ italic_N for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X. A metric space is called uniformly discrete if there is Ξ±>0𝛼0\alpha>0italic_Ξ± > 0 such that d⁒(x,y)β‰₯α𝑑π‘₯𝑦𝛼d(x,y)\geq\alphaitalic_d ( italic_x , italic_y ) β‰₯ italic_Ξ± for any xβ‰ y∈Xπ‘₯𝑦𝑋x\neq y\in Xitalic_x β‰  italic_y ∈ italic_X.

Let l2⁒(X)subscript𝑙2𝑋l_{2}(X)italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X ) denote the Hilbert space of square-summable complex-valued functions on X𝑋Xitalic_X. A map ΞΎ:Xβ†’l2⁒(X):πœ‰β†’π‘‹subscript𝑙2𝑋\xi:X\to l_{2}(X)italic_ΞΎ : italic_X β†’ italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X ), x↦ξxmaps-toπ‘₯subscriptπœ‰π‘₯x\mapsto\xi_{x}italic_x ↦ italic_ΞΎ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT, is said to have (R,Ξ΅)π‘…πœ€(R,\varepsilon)( italic_R , italic_Ξ΅ ) variation if d⁒(x,y)≀R𝑑π‘₯𝑦𝑅d(x,y)\leq Ritalic_d ( italic_x , italic_y ) ≀ italic_R implies β€–ΞΎxβˆ’ΞΎyβ€–<Ξ΅normsubscriptπœ‰π‘₯subscriptπœ‰π‘¦πœ€\|\xi_{x}-\xi_{y}\|<\varepsilonβˆ₯ italic_ΞΎ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT - italic_ΞΎ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT βˆ₯ < italic_Ξ΅.

It is known that for metric spaces of bounded geometry the following conditions are equivalent (cf. Theorem 1.2.4 of [8]):

  • (i)

    (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) has property A;

  • (ii)

    for all R>0𝑅0R>0italic_R > 0, Ξ΅>0πœ€0\varepsilon>0italic_Ξ΅ > 0, there exists S=S⁒(d,R,Ξ΅)>0π‘†π‘†π‘‘π‘…πœ€0S=S(d,R,\varepsilon)>0italic_S = italic_S ( italic_d , italic_R , italic_Ξ΅ ) > 0 and a map ΞΎ:Xβ†’l2⁒(X):πœ‰β†’π‘‹subscript𝑙2𝑋\xi:X\to l_{2}(X)italic_ΞΎ : italic_X β†’ italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X ) such that

    1. (1)

      ΞΎπœ‰\xiitalic_ΞΎ has (R,Ξ΅)π‘…πœ€(R,\varepsilon)( italic_R , italic_Ξ΅ ) variation, and β€–ΞΎxβ€–=1normsubscriptπœ‰π‘₯1\|\xi_{x}\|=1βˆ₯ italic_ΞΎ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT βˆ₯ = 1 for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X;

    2. (2)

      supp⁑ξxβŠ‚BS⁒(x)suppsubscriptπœ‰π‘₯subscript𝐡𝑆π‘₯\operatorname{supp}\xi_{x}\subset B_{S}(x)roman_supp italic_ΞΎ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT βŠ‚ italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_x ) for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X.

For general discrete metric spaces, not necessarily of bounded geometry, property A is defined as follows: (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) has property A if for any R>0𝑅0R>0italic_R > 0 and any Ξ΅>0πœ€0\varepsilon>0italic_Ξ΅ > 0 there exists S>0𝑆0S>0italic_S > 0 and a family of finite subsets {Ax}x∈Xsubscriptsubscript𝐴π‘₯π‘₯𝑋\{A_{x}\}_{x\in X}{ italic_A start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_x ∈ italic_X end_POSTSUBSCRIPT in X×ℕ𝑋ℕX\times\mathbb{N}italic_X Γ— blackboard_N such that

  1. (1)

    d⁒(x,y)<R𝑑π‘₯𝑦𝑅d(x,y)<Ritalic_d ( italic_x , italic_y ) < italic_R implies |Ax⁒Δ⁒Ay||Ax∩Ay|<Ξ΅subscript𝐴π‘₯Ξ”subscript𝐴𝑦subscript𝐴π‘₯subscriptπ΄π‘¦πœ€\frac{|A_{x}\Delta A_{y}|}{|A_{x}\cap A_{y}|}<\varepsilondivide start_ARG | italic_A start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT roman_Ξ” italic_A start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT | end_ARG start_ARG | italic_A start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ∩ italic_A start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT | end_ARG < italic_Ξ΅;

  2. (2)

    AxβŠ‚BS⁒(x)Γ—β„•subscript𝐴π‘₯subscript𝐡𝑆π‘₯β„•A_{x}\subset B_{S}(x)\times\mathbb{N}italic_A start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT βŠ‚ italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_x ) Γ— blackboard_N for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X.

Note that it was shown in [9] that, for bounded geometry spaces, one can get rid of the seemingly redundant factor β„•β„•\mathbb{N}blackboard_N and to use subsets AxβŠ‚Xsubscript𝐴π‘₯𝑋A_{x}\subset Xitalic_A start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT βŠ‚ italic_X, x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X, in the above definition.

2. Metrics of bounded geometry

Given two metrics, d1subscript𝑑1d_{1}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and d2subscript𝑑2d_{2}italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, on a set X𝑋Xitalic_X, we say that d2subscript𝑑2d_{2}italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT dominates d1subscript𝑑1d_{1}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and write d1βͺ―d2precedes-or-equalssubscript𝑑1subscript𝑑2d_{1}\preceq d_{2}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βͺ― italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT if d1⁒(x,y)β‰₯d2⁒(x,y)subscript𝑑1π‘₯𝑦subscript𝑑2π‘₯𝑦d_{1}(x,y)\geq d_{2}(x,y)italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) β‰₯ italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X. We say that d2subscript𝑑2d_{2}italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT coarsely dominates d1subscript𝑑1d_{1}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and write d1βͺ―cd2subscriptprecedes-or-equals𝑐subscript𝑑1subscript𝑑2d_{1}\preceq_{c}d_{2}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βͺ― start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT if there exists a homeomorphism Οˆπœ“\psiitalic_ψ of (0,∞]0(0,\infty]( 0 , ∞ ] such that ψ⁒(d1⁒(x,y))β‰₯d2⁒(x,y)πœ“subscript𝑑1π‘₯𝑦subscript𝑑2π‘₯𝑦\psi(d_{1}(x,y))\geq d_{2}(x,y)italic_ψ ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) ) β‰₯ italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X. Both βͺ―precedes-or-equals\preceqβͺ― and βͺ―csubscriptprecedes-or-equals𝑐\preceq_{c}βͺ― start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT give a partial order on the set of all metrics on X𝑋Xitalic_X.

Given a metric space X=(X,d)𝑋𝑋𝑑X=(X,d)italic_X = ( italic_X , italic_d ) with a uniformly discrete metric d𝑑ditalic_d, consider the set ℬ⁒𝒒⁒(X,d)ℬ𝒒𝑋𝑑\mathcal{B}\mathcal{G}(X,d)caligraphic_B caligraphic_G ( italic_X , italic_d ) of all metrics ρ𝜌\rhoitalic_ρ on X𝑋Xitalic_X such that

  • (m1)

    ρβͺ―dprecedes-or-equalsπœŒπ‘‘\rho\preceq ditalic_ρ βͺ― italic_d;

  • (m2)

    ρ𝜌\rhoitalic_ρ is of bounded geometry.

The following result was shown in [3]. As the set ℬ⁒𝒒⁒(X,d)ℬ𝒒𝑋𝑑\mathcal{B}\mathcal{G}(X,d)caligraphic_B caligraphic_G ( italic_X , italic_d ) was defined in [3] a bit differently, we provide a proof here.

Lemma 2.1.

The set ℬ⁒𝒒⁒(X,d)ℬ𝒒𝑋𝑑\mathcal{B}\mathcal{G}(X,d)caligraphic_B caligraphic_G ( italic_X , italic_d ) is directed, i.e. for any ρ1,ρ2βˆˆβ„¬β’π’’β’(X,d)subscript𝜌1subscript𝜌2ℬ𝒒𝑋𝑑\rho_{1},\rho_{2}\in\mathcal{B}\mathcal{G}(X,d)italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ) there exists Οβˆˆβ„¬β’π’’β’(X,d)πœŒβ„¬π’’π‘‹π‘‘\rho\in\mathcal{B}\mathcal{G}(X,d)italic_ρ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ) such that ρiβͺ―ρprecedes-or-equalssubscriptπœŒπ‘–πœŒ\rho_{i}\preceq\rhoitalic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT βͺ― italic_ρ, i=1,2𝑖12i=1,2italic_i = 1 , 2.

Proof.

Let ρ1,ρ2βˆˆβ„¬β’π’’β’(X,d)subscript𝜌1subscript𝜌2ℬ𝒒𝑋𝑑\rho_{1},\rho_{2}\in\mathcal{B}\mathcal{G}(X,d)italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ). As (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) is uniformly discrete, we may assume without loss of generality that d⁒(x,y)β‰₯1𝑑π‘₯𝑦1d(x,y)\geq 1italic_d ( italic_x , italic_y ) β‰₯ 1 for any xβ‰ y∈Xπ‘₯𝑦𝑋x\neq y\in Xitalic_x β‰  italic_y ∈ italic_X. Turn X𝑋Xitalic_X into a complete graph G𝐺Gitalic_G by connecting each two points, x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X, by an edge, and assign length l⁒(x,y)=min⁑(ρ1⁒(x,y),ρ2⁒(x,y))𝑙π‘₯𝑦subscript𝜌1π‘₯𝑦subscript𝜌2π‘₯𝑦l(x,y)=\min(\rho_{1}(x,y),\rho_{2}(x,y))italic_l ( italic_x , italic_y ) = roman_min ( italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) , italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) ) to the edge that connects xπ‘₯xitalic_x with y𝑦yitalic_y. As ρ1,ρ2βͺ―dprecedes-or-equalssubscript𝜌1subscript𝜌2𝑑\rho_{1},\rho_{2}\preceq ditalic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βͺ― italic_d, l⁒(x,y)β‰₯1𝑙π‘₯𝑦1l(x,y)\geq 1italic_l ( italic_x , italic_y ) β‰₯ 1 for any xβ‰ y∈Xπ‘₯𝑦𝑋x\neq y\in Xitalic_x β‰  italic_y ∈ italic_X. If γ𝛾\gammaitalic_Ξ³ is a path in G𝐺Gitalic_G that connects two vertices, define its length l⁒(Ξ³)𝑙𝛾l(\gamma)italic_l ( italic_Ξ³ ) as the sum of lengths of the edges contained in γ𝛾\gammaitalic_Ξ³. Set ρ⁒(x,y)=infΞ³l⁒(Ξ³)𝜌π‘₯𝑦subscriptinfimum𝛾𝑙𝛾\rho(x,y)=\inf_{\gamma}l(\gamma)italic_ρ ( italic_x , italic_y ) = roman_inf start_POSTSUBSCRIPT italic_Ξ³ end_POSTSUBSCRIPT italic_l ( italic_Ξ³ ), where the infimum is taken over all paths that connect xπ‘₯xitalic_x with y𝑦yitalic_y. Clearly, ρ𝜌\rhoitalic_ρ is a metric. Given x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X and Ξ΅>0πœ€0\varepsilon>0italic_Ξ΅ > 0, there is a path γ𝛾\gammaitalic_Ξ³ connecting xπ‘₯xitalic_x with y𝑦yitalic_y such that ρ⁒(x,y)>l⁒(Ξ³)βˆ’Ξ΅πœŒπ‘₯π‘¦π‘™π›Ύπœ€\rho(x,y)>l(\gamma)-\varepsilonitalic_ρ ( italic_x , italic_y ) > italic_l ( italic_Ξ³ ) - italic_Ξ΅. Let x0=x,x1,x2,…,xn=yformulae-sequencesubscriptπ‘₯0π‘₯subscriptπ‘₯1subscriptπ‘₯2…subscriptπ‘₯𝑛𝑦x_{0}=x,x_{1},x_{2},\ldots,x_{n}=yitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_x , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_y be the vertices on γ𝛾\gammaitalic_Ξ³, i.e. Ξ³=(x=x0,x1,…,xn=y)𝛾formulae-sequenceπ‘₯subscriptπ‘₯0subscriptπ‘₯1…subscriptπ‘₯𝑛𝑦\gamma=(x=x_{0},x_{1},\ldots,x_{n}=y)italic_Ξ³ = ( italic_x = italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_y ). Then l⁒(Ξ³)=βˆ‘i=1nl⁒(xiβˆ’1,xi)𝑙𝛾superscriptsubscript𝑖1𝑛𝑙subscriptπ‘₯𝑖1subscriptπ‘₯𝑖l(\gamma)=\sum_{i=1}^{n}l(x_{i-1},x_{i})italic_l ( italic_Ξ³ ) = βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_l ( italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ). Therefore,

d⁒(x,y)β‰€βˆ‘i=1nd⁒(xiβˆ’1,xi)β‰€βˆ‘i=1nl⁒(xiβˆ’1,xi)<ρ⁒(x,y)βˆ’Ξ΅.𝑑π‘₯𝑦superscriptsubscript𝑖1𝑛𝑑subscriptπ‘₯𝑖1subscriptπ‘₯𝑖superscriptsubscript𝑖1𝑛𝑙subscriptπ‘₯𝑖1subscriptπ‘₯π‘–πœŒπ‘₯π‘¦πœ€d(x,y)\leq\sum_{i=1}^{n}d(x_{i-1},x_{i})\leq\sum_{i=1}^{n}l(x_{i-1},x_{i})<% \rho(x,y)-\varepsilon.italic_d ( italic_x , italic_y ) ≀ βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≀ βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_l ( italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) < italic_ρ ( italic_x , italic_y ) - italic_Ξ΅ .

As Ξ΅πœ€\varepsilonitalic_Ξ΅ is arbitrary, we conclude that d⁒(x,y)≀ρ⁒(x,y)𝑑π‘₯π‘¦πœŒπ‘₯𝑦d(x,y)\leq\rho(x,y)italic_d ( italic_x , italic_y ) ≀ italic_ρ ( italic_x , italic_y ) for any x,yπ‘₯𝑦x,yitalic_x , italic_y.

Note that if we assign length l1⁒(x,y)=ρ1⁒(x,y)subscript𝑙1π‘₯𝑦subscript𝜌1π‘₯𝑦l_{1}(x,y)=\rho_{1}(x,y)italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) = italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) to each edge of G𝐺Gitalic_G and define a metric in the same way as the infimum of lengths of paths connecting two vertices then this metric would coincide with ρ1subscript𝜌1\rho_{1}italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Therefore, ρ⁒(x,y)≀ρ1⁒(x,y)𝜌π‘₯𝑦subscript𝜌1π‘₯𝑦\rho(x,y)\leq\rho_{1}(x,y)italic_ρ ( italic_x , italic_y ) ≀ italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X. Similarly, ρ⁒(x,y)≀ρ2⁒(x,y)𝜌π‘₯𝑦subscript𝜌2π‘₯𝑦\rho(x,y)\leq\rho_{2}(x,y)italic_ρ ( italic_x , italic_y ) ≀ italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X.

It remains to show that ρ𝜌\rhoitalic_ρ has bounded geometry. Fix x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X, Rβˆˆβ„•π‘…β„•R\in\mathbb{N}italic_R ∈ blackboard_N, and let ρ⁒(x,y)<R𝜌π‘₯𝑦𝑅\rho(x,y)<Ritalic_ρ ( italic_x , italic_y ) < italic_R. Let γ𝛾\gammaitalic_Ξ³ be a path connecting xπ‘₯xitalic_x with y𝑦yitalic_y with length l⁒(Ξ³)<R𝑙𝛾𝑅l(\gamma)<Ritalic_l ( italic_Ξ³ ) < italic_R. As ρ⁒(u,v)β‰₯1πœŒπ‘’π‘£1\rho(u,v)\geq 1italic_ρ ( italic_u , italic_v ) β‰₯ 1 for any u,v∈X𝑒𝑣𝑋u,v\in Xitalic_u , italic_v ∈ italic_X, the path γ𝛾\gammaitalic_Ξ³ contains not more than R𝑅Ritalic_R edges, and the length of each edge does not exceed R𝑅Ritalic_R. Let Ξ³=(x=x0,x1,…,xn=y)𝛾formulae-sequenceπ‘₯subscriptπ‘₯0subscriptπ‘₯1…subscriptπ‘₯𝑛𝑦\gamma=(x=x_{0},x_{1},\ldots,x_{n}=y)italic_Ξ³ = ( italic_x = italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_y ), n≀R𝑛𝑅n\leq Ritalic_n ≀ italic_R. As ρ⁒(x,x1)<R𝜌π‘₯subscriptπ‘₯1𝑅\rho(x,x_{1})<Ritalic_ρ ( italic_x , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) < italic_R, either ρ1⁒(x,x1)subscript𝜌1π‘₯subscriptπ‘₯1\rho_{1}(x,x_{1})italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) or ρ2⁒(x,x1)subscript𝜌2π‘₯subscriptπ‘₯1\rho_{2}(x,x_{1})italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is less than R𝑅Ritalic_R, hence x1∈BRρ1⁒(x)βˆͺBRρ2⁒(x)subscriptπ‘₯1subscriptsuperscript𝐡subscript𝜌1𝑅π‘₯subscriptsuperscript𝐡subscript𝜌2𝑅π‘₯x_{1}\in B^{\rho_{1}}_{R}(x)\cup B^{\rho_{2}}_{R}(x)italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_B start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_x ) βˆͺ italic_B start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_x ), so there are not more than N⁒(r)=supx∈X(|BRρ1⁒(x)|+|BRρ2⁒(x)|)π‘π‘Ÿsubscriptsupremumπ‘₯𝑋subscriptsuperscript𝐡subscript𝜌1𝑅π‘₯subscriptsuperscript𝐡subscript𝜌2𝑅π‘₯N(r)=\sup_{x\in X}(|B^{\rho_{1}}_{R}(x)|+|B^{\rho_{2}}_{R}(x)|)italic_N ( italic_r ) = roman_sup start_POSTSUBSCRIPT italic_x ∈ italic_X end_POSTSUBSCRIPT ( | italic_B start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_x ) | + | italic_B start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_x ) | ) points x1subscriptπ‘₯1x_{1}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT with ρ⁒(x,x1)<R𝜌π‘₯subscriptπ‘₯1𝑅\rho(x,x_{1})<Ritalic_ρ ( italic_x , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) < italic_R. Similarly, there are not more than N⁒(R)𝑁𝑅N(R)italic_N ( italic_R ) points x2subscriptπ‘₯2x_{2}italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with ρ⁒(x1,x2)<R𝜌subscriptπ‘₯1subscriptπ‘₯2𝑅\rho(x_{1},x_{2})<Ritalic_ρ ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) < italic_R, etc. Then |BRρ⁒(x)|≀N⁒(R)Rsubscriptsuperscriptπ΅πœŒπ‘…π‘₯𝑁superscript𝑅𝑅|B^{\rho}_{R}(x)|\leq N(R)^{R}| italic_B start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_x ) | ≀ italic_N ( italic_R ) start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X. ∎

Lemma 2.1 allows to consider d𝑑ditalic_d as the limit metric for ℬ⁒𝒒⁒(X,d)ℬ𝒒𝑋𝑑\mathcal{B}\mathcal{G}(X,d)caligraphic_B caligraphic_G ( italic_X , italic_d ).

In the following two lemmas we construct bounded geometry metrics on X𝑋Xitalic_X that agree with d𝑑ditalic_d on certain subsets.

Lemma 2.2.

Let X=(X,d)𝑋𝑋𝑑X=(X,d)italic_X = ( italic_X , italic_d ) be a countable metric space. There exists a sequence {Οƒm}mβˆˆβ„•subscriptsubscriptπœŽπ‘šπ‘šβ„•\{\sigma_{m}\}_{m\in\mathbb{N}}{ italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_m ∈ blackboard_N end_POSTSUBSCRIPT of metrics on X𝑋Xitalic_X such that

  • (i)

    Οƒmβˆˆβ„¬β’π’’β’(X,d)subscriptπœŽπ‘šβ„¬π’’π‘‹π‘‘\sigma_{m}\in\mathcal{B}\mathcal{G}(X,d)italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ) for any mβˆˆβ„•π‘šβ„•m\in\mathbb{N}italic_m ∈ blackboard_N;

  • (ii)

    Οƒ1βͺ―…βͺ―Οƒmβͺ―Οƒm+1βͺ―…βͺ―dprecedes-or-equalssubscript𝜎1…precedes-or-equalssubscriptπœŽπ‘šprecedes-or-equalssubscriptπœŽπ‘š1precedes-or-equals…precedes-or-equals𝑑\sigma_{1}\preceq\ldots\preceq\sigma_{m}\preceq\sigma_{m+1}\preceq\ldots\preceq ditalic_Οƒ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βͺ― … βͺ― italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT βͺ― italic_Οƒ start_POSTSUBSCRIPT italic_m + 1 end_POSTSUBSCRIPT βͺ― … βͺ― italic_d;

  • (iii)

    for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X there exists Nβˆˆβ„•π‘β„•N\in\mathbb{N}italic_N ∈ blackboard_N such that Οƒm⁒(x,y)=d⁒(x,y)subscriptπœŽπ‘šπ‘₯𝑦𝑑π‘₯𝑦\sigma_{m}(x,y)=d(x,y)italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_x , italic_y ) = italic_d ( italic_x , italic_y ) for any mβ‰₯Nπ‘šπ‘m\geq Nitalic_m β‰₯ italic_N.

Proof.

Let X={x1,x2,…}𝑋subscriptπ‘₯1subscriptπ‘₯2…X=\{x_{1},x_{2},\ldots\}italic_X = { italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … }, Xm={x1,…,xm}subscriptπ‘‹π‘šsubscriptπ‘₯1…subscriptπ‘₯π‘šX_{m}=\{x_{1},\ldots,x_{m}\}italic_X start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = { italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT }. For x,y∈Xnπ‘₯𝑦subscript𝑋𝑛x,y\in X_{n}italic_x , italic_y ∈ italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT set Οƒm⁒(x,y)=d⁒(x,y)subscriptπœŽπ‘šπ‘₯𝑦𝑑π‘₯𝑦\sigma_{m}(x,y)=d(x,y)italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_x , italic_y ) = italic_d ( italic_x , italic_y ). For xm+1subscriptπ‘₯π‘š1x_{m+1}italic_x start_POSTSUBSCRIPT italic_m + 1 end_POSTSUBSCRIPT and x∈Xmπ‘₯subscriptπ‘‹π‘šx\in X_{m}italic_x ∈ italic_X start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT set

Οƒm⁒(xm+1,x)=maxi=1,…,m⁑{d⁒(xm+1,xi),diam⁑(Xm)}+1.subscriptπœŽπ‘šsubscriptπ‘₯π‘š1π‘₯subscript𝑖1β€¦π‘šπ‘‘subscriptπ‘₯π‘š1subscriptπ‘₯𝑖diamsubscriptπ‘‹π‘š1\sigma_{m}(x_{m+1},x)=\max_{i=1,\ldots,m}\{d(x_{m+1},x_{i}),\operatorname{diam% }(X_{m})\}+1.italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_m + 1 end_POSTSUBSCRIPT , italic_x ) = roman_max start_POSTSUBSCRIPT italic_i = 1 , … , italic_m end_POSTSUBSCRIPT { italic_d ( italic_x start_POSTSUBSCRIPT italic_m + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) , roman_diam ( italic_X start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) } + 1 .

Then, inductively, for xm+k+1subscriptπ‘₯π‘šπ‘˜1x_{m+k+1}italic_x start_POSTSUBSCRIPT italic_m + italic_k + 1 end_POSTSUBSCRIPT and y∈Xm+k𝑦subscriptπ‘‹π‘šπ‘˜y\in X_{m+k}italic_y ∈ italic_X start_POSTSUBSCRIPT italic_m + italic_k end_POSTSUBSCRIPT set

Οƒm⁒(xm+k+1,y)=maxi=1,…,m+k⁑{d⁒(xm+1,xi),diam⁑(Xm+k)}+k.subscriptπœŽπ‘šsubscriptπ‘₯π‘šπ‘˜1𝑦subscript𝑖1β€¦π‘šπ‘˜π‘‘subscriptπ‘₯π‘š1subscriptπ‘₯𝑖diamsubscriptπ‘‹π‘šπ‘˜π‘˜\sigma_{m}(x_{m+k+1},y)=\max_{i=1,\ldots,m+k}\{d(x_{m+1},x_{i}),\operatorname{% diam}(X_{m+k})\}+k.italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_m + italic_k + 1 end_POSTSUBSCRIPT , italic_y ) = roman_max start_POSTSUBSCRIPT italic_i = 1 , … , italic_m + italic_k end_POSTSUBSCRIPT { italic_d ( italic_x start_POSTSUBSCRIPT italic_m + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) , roman_diam ( italic_X start_POSTSUBSCRIPT italic_m + italic_k end_POSTSUBSCRIPT ) } + italic_k .

The triangle inequality trivially holds, so each ΟƒmsubscriptπœŽπ‘š\sigma_{m}italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT is a metric. Other claimed properties of ΟƒmsubscriptπœŽπ‘š\sigma_{m}italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT can be easily checked. ∎

Lemma 2.3.

Let X𝑋Xitalic_X be uniformly discrete, and let h:Xβ†’X:β„Žβ†’π‘‹π‘‹h:X\to Xitalic_h : italic_X β†’ italic_X be a map. Suppose that there exists Nβˆˆβ„•π‘β„•N\in\mathbb{N}italic_N ∈ blackboard_N such that |hβˆ’1⁒(x)|≀Nsuperscriptβ„Ž1π‘₯𝑁|h^{-1}(x)|\leq N| italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_x ) | ≀ italic_N. Then there exists Οβˆˆβ„¬β’π’’β’(X,d)πœŒβ„¬π’’π‘‹π‘‘\rho\in\mathcal{B}\mathcal{G}(X,d)italic_ρ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ) such that ρ⁒(x,h⁒(x))=d⁒(x,h⁒(x))𝜌π‘₯β„Žπ‘₯𝑑π‘₯β„Žπ‘₯\rho(x,h(x))=d(x,h(x))italic_ρ ( italic_x , italic_h ( italic_x ) ) = italic_d ( italic_x , italic_h ( italic_x ) ) for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X.

Proof.

Construct a weighted graph with X𝑋Xitalic_X as the set of vertices, and two vertices x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X are connected by an edge of length d⁒(x,y)𝑑π‘₯𝑦d(x,y)italic_d ( italic_x , italic_y ) if y=h⁒(x)π‘¦β„Žπ‘₯y=h(x)italic_y = italic_h ( italic_x ). Let Aisubscript𝐴𝑖A_{i}italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, iβˆˆβ„•π‘–β„•i\in\mathbb{N}italic_i ∈ blackboard_N, be the connected components of this graph. Fix a vertex xisubscriptπ‘₯𝑖x_{i}italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT in each Aisubscript𝐴𝑖A_{i}italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, and add the edges connecting xisubscriptπ‘₯𝑖x_{i}italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT with xi+1subscriptπ‘₯𝑖1x_{i+1}italic_x start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT of length d⁒(xi,xi+1)𝑑subscriptπ‘₯𝑖subscriptπ‘₯𝑖1d(x_{i},x_{i+1})italic_d ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ). Then the resulting graph is connected. Let ρ𝜌\rhoitalic_ρ be the wighted graph metric, i.e. the length of a path is the sum of lengths of its edges, and ρ⁒(x,y)𝜌π‘₯𝑦\rho(x,y)italic_ρ ( italic_x , italic_y ) is defined as the infimum of path lengths over all paths that connect xπ‘₯xitalic_x with y𝑦yitalic_y in the graph. If Ξ³=(x=y0,y1,y2,…,yn=y)𝛾formulae-sequenceπ‘₯subscript𝑦0subscript𝑦1subscript𝑦2…subscript𝑦𝑛𝑦\gamma=(x=y_{0},y_{1},y_{2},\ldots,y_{n}=y)italic_Ξ³ = ( italic_x = italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_y ) is a path such that ρ⁒(x,y)β‰₯βˆ‘j=1nd⁒(yiβˆ’1,yi)βˆ’Ξ΅πœŒπ‘₯𝑦superscriptsubscript𝑗1𝑛𝑑subscript𝑦𝑖1subscriptπ‘¦π‘–πœ€\rho(x,y)\geq\sum_{j=1}^{n}d(y_{i-1},y_{i})-\varepsilonitalic_ρ ( italic_x , italic_y ) β‰₯ βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d ( italic_y start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) - italic_Ξ΅ then, by the triangle inequality, d⁒(x,y)β‰€βˆ‘j=1nd⁒(yiβˆ’1,yi)≀ρ⁒(x,y)+Ρ𝑑π‘₯𝑦superscriptsubscript𝑗1𝑛𝑑subscript𝑦𝑖1subscriptπ‘¦π‘–πœŒπ‘₯π‘¦πœ€d(x,y)\leq\sum_{j=1}^{n}d(y_{i-1},y_{i})\leq\rho(x,y)+\varepsilonitalic_d ( italic_x , italic_y ) ≀ βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d ( italic_y start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≀ italic_ρ ( italic_x , italic_y ) + italic_Ξ΅, and as Ξ΅>0πœ€0\varepsilon>0italic_Ξ΅ > 0 is arbitrary, we conclude that ρβͺ―dprecedes-or-equalsπœŒπ‘‘\rho\preceq ditalic_ρ βͺ― italic_d. In particular, this implies that ρ⁒(x,h⁒(x))=d⁒(x,h⁒(x))𝜌π‘₯β„Žπ‘₯𝑑π‘₯β„Žπ‘₯\rho(x,h(x))=d(x,h(x))italic_ρ ( italic_x , italic_h ( italic_x ) ) = italic_d ( italic_x , italic_h ( italic_x ) ), as these two points are connected by a path consisting of a single edge. Also, as X𝑋Xitalic_X is uniformly discrete, lengths of all edges are separated from zero. and each vertex has no more than N+2𝑁2N+2italic_N + 2 adjacent vertices, therefore, ρ𝜌\rhoitalic_ρ has bounded geometry. ∎

3. Property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A for discrete metric spaces

Definition 3.1.

We say that (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) has the bounded geometry version of property A (property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A) if for any Οƒβˆˆβ„¬β’π’’β’(X,d)πœŽβ„¬π’’π‘‹π‘‘\sigma\in\mathcal{B}\mathcal{G}(X,d)italic_Οƒ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ) there exists Οβˆˆβ„¬β’π’’β’(X,d)πœŒβ„¬π’’π‘‹π‘‘\rho\in\mathcal{B}\mathcal{G}(X,d)italic_ρ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ) such that

  • (i)

    Οƒβͺ―cρsubscriptprecedes-or-equalsπ‘πœŽπœŒ\sigma\preceq_{c}\rhoitalic_Οƒ βͺ― start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_ρ;

  • (ii)

    (X,ρ)π‘‹πœŒ(X,\rho)( italic_X , italic_ρ ) satisfies property A.

Recall that a function k:XΓ—X→ℝ:π‘˜β†’π‘‹π‘‹β„k:X\times X\to\mathbb{R}italic_k : italic_X Γ— italic_X β†’ blackboard_R is a negative type kernel if k⁒(y,x)=k⁒(x,y)π‘˜π‘¦π‘₯π‘˜π‘₯𝑦k(y,x)=k(x,y)italic_k ( italic_y , italic_x ) = italic_k ( italic_x , italic_y ) for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X and if βˆ‘i,j=1nΞ±i⁒k⁒(xi,xj)⁒αj≀0superscriptsubscript𝑖𝑗1𝑛subscriptπ›Όπ‘–π‘˜subscriptπ‘₯𝑖subscriptπ‘₯𝑗subscript𝛼𝑗0\sum_{i,j=1}^{n}\alpha_{i}k(x_{i},x_{j})\alpha_{j}\leq 0βˆ‘ start_POSTSUBSCRIPT italic_i , italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Ξ± start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_k ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) italic_Ξ± start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≀ 0 for any nβˆˆβ„•π‘›β„•n\in\mathbb{N}italic_n ∈ blackboard_N, x1,…,xn∈Xsubscriptπ‘₯1…subscriptπ‘₯𝑛𝑋x_{1},\ldots,x_{n}\in Xitalic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_X and Ξ±1,…,Ξ±nβˆˆβ„subscript𝛼1…subscript𝛼𝑛ℝ\alpha_{1},\ldots,\alpha_{n}\in\mathbb{R}italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_Ξ± start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ blackboard_R such that βˆ‘i=1nΞ±i=0superscriptsubscript𝑖1𝑛subscript𝛼𝑖0\sum_{i=1}^{n}\alpha_{i}=0βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Ξ± start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 0.

Theorem 3.2.

Let X=(X,d)𝑋𝑋𝑑X=(X,d)italic_X = ( italic_X , italic_d ) be a countable metric space. If (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) has property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G- A then there exists a negative type kernel kπ‘˜kitalic_k on X𝑋Xitalic_X and homeomorphisms Ο•1,Ο•2subscriptitalic-Ο•1subscriptitalic-Ο•2\phi_{1},\phi_{2}italic_Ο• start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ο• start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of (0,∞]0(0,\infty]( 0 , ∞ ] such that

Ο•1(d(x,y)≀k(x,y)≀ϕ2(d(x,y))\phi_{1}(d(x,y)\leq k(x,y)\leq\phi_{2}(d(x,y))italic_Ο• start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_d ( italic_x , italic_y ) ≀ italic_k ( italic_x , italic_y ) ≀ italic_Ο• start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_d ( italic_x , italic_y ) )

for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X.

Proof.

Let Ξ΅=12nπœ€1superscript2𝑛\varepsilon=\frac{1}{2^{n}}italic_Ξ΅ = divide start_ARG 1 end_ARG start_ARG 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG, R=n𝑅𝑛R=nitalic_R = italic_n. Let Fm={x1,…,xm}βŠ‚XsubscriptπΉπ‘šsubscriptπ‘₯1…subscriptπ‘₯π‘šπ‘‹F_{m}=\{x_{1},\ldots,x_{m}\}\subset Xitalic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = { italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT } βŠ‚ italic_X, and let {Οƒm}mβˆˆβ„•subscriptsubscriptπœŽπ‘šπ‘šβ„•\{\sigma_{m}\}_{m\in\mathbb{N}}{ italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_m ∈ blackboard_N end_POSTSUBSCRIPT be a sequence of metrics on X𝑋Xitalic_X such that Οƒm|Fm=devaluated-atsubscriptπœŽπ‘šsubscriptπΉπ‘šπ‘‘\sigma_{m}|_{F_{m}}=ditalic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_d, and let ρmsubscriptπœŒπ‘š\rho_{m}italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT is a metric that satisfies the properties from Definition 3.1, i.e. Οƒmβͺ―ρmprecedes-or-equalssubscriptπœŽπ‘šsubscriptπœŒπ‘š\sigma_{m}\preceq\rho_{m}italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT βͺ― italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, and there exists a map ΞΎm,n:Xβ†’l2⁒(X):superscriptπœ‰π‘šπ‘›β†’π‘‹subscript𝑙2𝑋\xi^{m,n}:X\to l_{2}(X)italic_ΞΎ start_POSTSUPERSCRIPT italic_m , italic_n end_POSTSUPERSCRIPT : italic_X β†’ italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X ) such that ΞΎm,nsuperscriptπœ‰π‘šπ‘›\xi^{m,n}italic_ΞΎ start_POSTSUPERSCRIPT italic_m , italic_n end_POSTSUPERSCRIPT has (n,12n)𝑛1superscript2𝑛(n,\frac{1}{2^{n}})( italic_n , divide start_ARG 1 end_ARG start_ARG 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ) variation with respect to the metric ρmsubscriptπœŒπ‘š\rho_{m}italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, β€–ΞΎxm,nβ€–=1normsubscriptsuperscriptπœ‰π‘šπ‘›π‘₯1\|\xi^{m,n}_{x}\|=1βˆ₯ italic_ΞΎ start_POSTSUPERSCRIPT italic_m , italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT βˆ₯ = 1 for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X, and supp⁑ξxm,nβŠ‚BSnρm⁒(x)suppsubscriptsuperscriptπœ‰π‘šπ‘›π‘₯subscriptsuperscript𝐡subscriptπœŒπ‘šsubscript𝑆𝑛π‘₯\operatorname{supp}\xi^{m,n}_{x}\subset B^{\rho_{m}}_{S_{n}}(x)roman_supp italic_ΞΎ start_POSTSUPERSCRIPT italic_m , italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT βŠ‚ italic_B start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x ) for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X. Set

knm⁒(x,y)=⟨ξxm,n,ΞΎym,n⟩,subscriptsuperscriptπ‘˜π‘šπ‘›π‘₯𝑦subscriptsuperscriptπœ‰π‘šπ‘›π‘₯subscriptsuperscriptπœ‰π‘šπ‘›π‘¦k^{m}_{n}(x,y)=\langle\xi^{m,n}_{x},\xi^{m,n}_{y}\rangle,italic_k start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x , italic_y ) = ⟨ italic_ΞΎ start_POSTSUPERSCRIPT italic_m , italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT , italic_ΞΎ start_POSTSUPERSCRIPT italic_m , italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ⟩ ,
km⁒(x,y)=βˆ‘nβˆˆβ„•(1βˆ’knm⁒(x,y)).superscriptπ‘˜π‘šπ‘₯𝑦subscript𝑛ℕ1subscriptsuperscriptπ‘˜π‘šπ‘›π‘₯𝑦k^{m}(x,y)=\sum_{n\in\mathbb{N}}(1-k^{m}_{n}(x,y)).italic_k start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_x , italic_y ) = βˆ‘ start_POSTSUBSCRIPT italic_n ∈ blackboard_N end_POSTSUBSCRIPT ( 1 - italic_k start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x , italic_y ) ) . (1)

For each mπ‘šmitalic_m the series (1) is convergent by Theorem 3.2.8 in [8] to a negative type kernel, and |km⁒(x,y)|≀2⁒ρm⁒(x,y)+1superscriptπ‘˜π‘šπ‘₯𝑦2subscriptπœŒπ‘šπ‘₯𝑦1|k^{m}(x,y)|\leq 2\rho_{m}(x,y)+1| italic_k start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_x , italic_y ) | ≀ 2 italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_x , italic_y ) + 1 for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X. By assumption, there exists a homeomorphism Οˆπœ“\psiitalic_ψ of (0,∞]0(0,\infty]( 0 , ∞ ] such that for any fixed points x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X, we have

ρm⁒(x,y)β‰€Οˆβ’(Οƒm⁒(x,y))=ψ⁒(d⁒(x,y))subscriptπœŒπ‘šπ‘₯π‘¦πœ“subscriptπœŽπ‘šπ‘₯π‘¦πœ“π‘‘π‘₯𝑦\rho_{m}(x,y)\leq\psi(\sigma_{m}(x,y))=\psi(d(x,y))italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_x , italic_y ) ≀ italic_ψ ( italic_Οƒ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_x , italic_y ) ) = italic_ψ ( italic_d ( italic_x , italic_y ) )

for sufficiently great mπ‘šmitalic_m, therefore, the sequence km⁒(x,y)superscriptπ‘˜π‘šπ‘₯𝑦k^{m}(x,y)italic_k start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_x , italic_y ), mβˆˆβ„•π‘šβ„•m\in\mathbb{N}italic_m ∈ blackboard_N, is bounded, hence contains a convergent subsequence. Let (xi,yi)iβˆˆβ„•subscriptsubscriptπ‘₯𝑖subscript𝑦𝑖𝑖ℕ(x_{i},y_{i})_{i\in\mathbb{N}}( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT be a sequence of all pairs of points of X𝑋Xitalic_X. Choose a subsequence m1⁒(j)jβˆˆβ„•subscriptπ‘š1subscript𝑗𝑗ℕm_{1}(j)_{j\in\mathbb{N}}italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_j ) start_POSTSUBSCRIPT italic_j ∈ blackboard_N end_POSTSUBSCRIPT such that km1⁒(j)⁒(x1,y1)superscriptπ‘˜subscriptπ‘š1𝑗subscriptπ‘₯1subscript𝑦1k^{m_{1}(j)}(x_{1},y_{1})italic_k start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_j ) end_POSTSUPERSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is convergent. Then, within this subsequence, choose a subsequence m2⁒(j)jβˆˆβ„•subscriptπ‘š2subscript𝑗𝑗ℕm_{2}(j)_{j\in\mathbb{N}}italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_j ) start_POSTSUBSCRIPT italic_j ∈ blackboard_N end_POSTSUBSCRIPT such that km1⁒(j)⁒(x2,y2)superscriptπ‘˜subscriptπ‘š1𝑗subscriptπ‘₯2subscript𝑦2k^{m_{1}(j)}(x_{2},y_{2})italic_k start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_j ) end_POSTSUPERSCRIPT ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) is convergent, etc., and inductively we obtain, for each iβˆˆβ„•π‘–β„•i\in\mathbb{N}italic_i ∈ blackboard_N, a subsequence mi⁒(j)jβˆˆβ„•subscriptπ‘šπ‘–subscript𝑗𝑗ℕm_{i}(j)_{j\in\mathbb{N}}italic_m start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_j ) start_POSTSUBSCRIPT italic_j ∈ blackboard_N end_POSTSUBSCRIPT such that kmi⁒(j)⁒(xi,yi)superscriptπ‘˜subscriptπ‘šπ‘–π‘—subscriptπ‘₯𝑖subscript𝑦𝑖k^{m_{i}(j)}(x_{i},y_{i})italic_k start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_j ) end_POSTSUPERSCRIPT ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ), jβˆˆβ„•π‘—β„•j\in\mathbb{N}italic_j ∈ blackboard_N, is convergent for each iβˆˆβ„•π‘–β„•i\in\mathbb{N}italic_i ∈ blackboard_N, and each next subsequence is a subsequence of the preceeeding subsequence. Passing to the diagonal sequence (kmj⁒(j))jβˆˆβ„•subscriptsuperscriptπ‘˜subscriptπ‘šπ‘—π‘—π‘—β„•(k^{m_{j}(j)})_{j\in\mathbb{N}}( italic_k start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_j ) end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_j ∈ blackboard_N end_POSTSUBSCRIPT, we obtain a convergent sequence for each x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X. Set k⁒(x,y)=limjβ†’βˆžkmj⁒(j)⁒(x,y)π‘˜π‘₯𝑦subscript→𝑗superscriptπ‘˜subscriptπ‘šπ‘—π‘—π‘₯𝑦k(x,y)=\lim_{j\to\infty}k^{m_{j}(j)}(x,y)italic_k ( italic_x , italic_y ) = roman_lim start_POSTSUBSCRIPT italic_j β†’ ∞ end_POSTSUBSCRIPT italic_k start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_j ) end_POSTSUPERSCRIPT ( italic_x , italic_y ). Being the pointwise limit of negative type kernels, kπ‘˜kitalic_k is a negative type kernel too. Clearly, |k⁒(x,y)|≀2⁒ψ⁒(d⁒(x,y))+1π‘˜π‘₯𝑦2πœ“π‘‘π‘₯𝑦1|k(x,y)|\leq 2\psi(d(x,y))+1| italic_k ( italic_x , italic_y ) | ≀ 2 italic_ψ ( italic_d ( italic_x , italic_y ) ) + 1 for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X, and we may set Ο•2⁒(t)=2⁒ψ⁒(t)+1subscriptitalic-Ο•2𝑑2πœ“π‘‘1\phi_{2}(t)=2\psi(t)+1italic_Ο• start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) = 2 italic_ψ ( italic_t ) + 1.

Let Snm=S⁒(ρm,n,12n)subscriptsuperscriptπ‘†π‘šπ‘›π‘†subscriptπœŒπ‘šπ‘›1superscript2𝑛S^{m}_{n}=S(\rho_{m},n,\frac{1}{2^{n}})italic_S start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_S ( italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_n , divide start_ARG 1 end_ARG start_ARG 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ) be a constant from Definition 3.1. Without loss of generality we may assume that Snm>m+nsubscriptsuperscriptπ‘†π‘šπ‘›π‘šπ‘›S^{m}_{n}>m+nitalic_S start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT > italic_m + italic_n. For each n𝑛nitalic_n there exists m⁒(n)π‘šπ‘›m(n)italic_m ( italic_n ) such that Snm⁒(n)>nsubscriptsuperscriptπ‘†π‘šπ‘›π‘›π‘›S^{m(n)}_{n}>nitalic_S start_POSTSUPERSCRIPT italic_m ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT > italic_n, and limnβ†’βˆžm⁒(n)=∞subscriptβ†’π‘›π‘šπ‘›\lim_{n\to\infty}m(n)=\inftyroman_lim start_POSTSUBSCRIPT italic_n β†’ ∞ end_POSTSUBSCRIPT italic_m ( italic_n ) = ∞. Passing to the inverse function, for each mπ‘šmitalic_m there exists n⁒(m)π‘›π‘šn(m)italic_n ( italic_m ) such that Sn⁒(m)m>n⁒(m)subscriptsuperscriptπ‘†π‘šπ‘›π‘šπ‘›π‘šS^{m}_{n(m)}>n(m)italic_S start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n ( italic_m ) end_POSTSUBSCRIPT > italic_n ( italic_m ), and limmβ†’βˆžn⁒(m)=∞subscriptβ†’π‘šπ‘›π‘š\lim_{m\to\infty}n(m)=\inftyroman_lim start_POSTSUBSCRIPT italic_m β†’ ∞ end_POSTSUBSCRIPT italic_n ( italic_m ) = ∞. Let Ο•italic-Ο•\phiitalic_Ο• be a homeomorphism of (0,∞]0(0,\infty]( 0 , ∞ ] such that ϕ⁒(2⁒Snm⁒(n))>nitalic-Ο•2subscriptsuperscriptπ‘†π‘šπ‘›π‘›π‘›\phi(2S^{m(n)}_{n})>nitalic_Ο• ( 2 italic_S start_POSTSUPERSCRIPT italic_m ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) > italic_n (equivalently, ϕ⁒(2⁒Sn⁒(m)m)>n⁒(m)italic-Ο•2subscriptsuperscriptπ‘†π‘šπ‘›π‘šπ‘›π‘š\phi(2S^{m}_{n(m)})>n(m)italic_Ο• ( 2 italic_S start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n ( italic_m ) end_POSTSUBSCRIPT ) > italic_n ( italic_m )), mβˆˆβ„•π‘šβ„•m\in\mathbb{N}italic_m ∈ blackboard_N. Let 2⁒Sn⁒(m)m<ρm⁒(x,y)≀2⁒Sn⁒(m)+1m2subscriptsuperscriptπ‘†π‘šπ‘›π‘šsuperscriptπœŒπ‘šπ‘₯𝑦2subscriptsuperscriptπ‘†π‘šπ‘›π‘š12S^{m}_{n(m)}<\rho^{m}(x,y)\leq 2S^{m}_{n(m)+1}2 italic_S start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n ( italic_m ) end_POSTSUBSCRIPT < italic_ρ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_x , italic_y ) ≀ 2 italic_S start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n ( italic_m ) + 1 end_POSTSUBSCRIPT. Then ⟨ξxm,n,ΞΎym,n⟩=0subscriptsuperscriptπœ‰π‘šπ‘›π‘₯subscriptsuperscriptπœ‰π‘šπ‘›π‘¦0\langle\xi^{m,n}_{x},\xi^{m,n}_{y}\rangle=0⟨ italic_ΞΎ start_POSTSUPERSCRIPT italic_m , italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT , italic_ΞΎ start_POSTSUPERSCRIPT italic_m , italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ⟩ = 0 for n=1,…,n⁒(m)𝑛1β€¦π‘›π‘šn=1,\ldots,n(m)italic_n = 1 , … , italic_n ( italic_m ), hence knm⁒(x,y)=0subscriptsuperscriptπ‘˜π‘šπ‘›π‘₯𝑦0k^{m}_{n}(x,y)=0italic_k start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x , italic_y ) = 0 for n=1,…,n⁒(m)𝑛1β€¦π‘›π‘šn=1,\ldots,n(m)italic_n = 1 , … , italic_n ( italic_m ), thus the first n⁒(m)π‘›π‘šn(m)italic_n ( italic_m ) terms in (1) equal 1, therefore,

km⁒(x,y)β‰₯n⁒(m)β‰₯ϕ⁒(ρm⁒(x,y))βˆ’1β‰₯ϕ⁒(d⁒(x,y))βˆ’1superscriptπ‘˜π‘šπ‘₯π‘¦π‘›π‘šitalic-Ο•subscriptπœŒπ‘šπ‘₯𝑦1italic-ϕ𝑑π‘₯𝑦1k^{m}(x,y)\geq n(m)\geq\phi(\rho_{m}(x,y))-1\geq\phi(d(x,y))-1italic_k start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_x , italic_y ) β‰₯ italic_n ( italic_m ) β‰₯ italic_Ο• ( italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_x , italic_y ) ) - 1 β‰₯ italic_Ο• ( italic_d ( italic_x , italic_y ) ) - 1

for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X and for any mβˆˆβ„•π‘šβ„•m\in\mathbb{N}italic_m ∈ blackboard_N, hence k⁒(x,y)β‰₯ϕ⁒(d⁒(x,y))βˆ’1π‘˜π‘₯𝑦italic-ϕ𝑑π‘₯𝑦1k(x,y)\geq\phi(d(x,y))-1italic_k ( italic_x , italic_y ) β‰₯ italic_Ο• ( italic_d ( italic_x , italic_y ) ) - 1, and we can set Ο•1⁒(t)=ϕ⁒(t)βˆ’1subscriptitalic-Ο•1𝑑italic-ϕ𝑑1\phi_{1}(t)=\phi(t)-1italic_Ο• start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) = italic_Ο• ( italic_t ) - 1. ∎

Corollary 3.3.

Let X𝑋Xitalic_X be a discrete metric space with property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A. Then X𝑋Xitalic_X is coarsely embeddable in a Hilbert space.

4. Relation to Roe Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-algebras

Let T𝑇Titalic_T be an operator on l2⁒(X)subscript𝑙2𝑋l_{2}(X)italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X ) with matrix entries Tx⁒y=⟨δx,T⁒δy⟩subscript𝑇π‘₯𝑦subscript𝛿π‘₯𝑇subscript𝛿𝑦T_{xy}=\langle\delta_{x},T\delta_{y}\rangleitalic_T start_POSTSUBSCRIPT italic_x italic_y end_POSTSUBSCRIPT = ⟨ italic_Ξ΄ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT , italic_T italic_Ξ΄ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ⟩, where x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X, and Ξ΄x⁒(y)={1, if β’y=x;0, if β’yβ‰ x.subscript𝛿π‘₯𝑦cases1 if π‘¦π‘₯0 if π‘¦π‘₯\delta_{x}(y)=\left\{\begin{array}[]{cl}1,&\mbox{\ if\ }y=x;\\ 0,&\mbox{\ if\ }y\neq x.\end{array}\right.italic_Ξ΄ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_y ) = { start_ARRAY start_ROW start_CELL 1 , end_CELL start_CELL if italic_y = italic_x ; end_CELL end_ROW start_ROW start_CELL 0 , end_CELL start_CELL if italic_y β‰  italic_x . end_CELL end_ROW end_ARRAY Recall that T𝑇Titalic_T has propagation ≀Labsent𝐿\leq L≀ italic_L if d⁒(x,y)β‰₯L𝑑π‘₯𝑦𝐿d(x,y)\geq Litalic_d ( italic_x , italic_y ) β‰₯ italic_L implies Tx⁒y=0subscript𝑇π‘₯𝑦0T_{xy}=0italic_T start_POSTSUBSCRIPT italic_x italic_y end_POSTSUBSCRIPT = 0. The norm closure of the set of operators of finite propagation is called the uniform Roe algebra of X𝑋Xitalic_X and is usually denoted by Cuβˆ—β’(X)subscriptsuperscript𝐢𝑒𝑋C^{*}_{u}(X)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X ). We shall include dependence on a metric in this notation and write Cuβˆ—β’(X,d)subscriptsuperscript𝐢𝑒𝑋𝑑C^{*}_{u}(X,d)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_d ).

Lemma 4.1.

Let d1,d2subscript𝑑1subscript𝑑2d_{1},d_{2}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two metrics on X𝑋Xitalic_X. If d1βͺ―cd2subscriptprecedes-or-equals𝑐subscript𝑑1subscript𝑑2d_{1}\preceq_{c}d_{2}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βͺ― start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT then Cuβˆ—β’(X,d2)βŠ‚Cuβˆ—β’(X,d1)subscriptsuperscript𝐢𝑒𝑋subscript𝑑2subscriptsuperscript𝐢𝑒𝑋subscript𝑑1C^{*}_{u}(X,d_{2})\subset C^{*}_{u}(X,d_{1})italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) βŠ‚ italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ).

Proof.

Obvious. ∎

The following remarkable characterization was proved in [6].

Theorem 4.2 ([6]).

Let X𝑋Xitalic_X be a metric space of bounded geometry. Then the following are equivalent:

  1. (1)

    X𝑋Xitalic_X has property A;

  2. (2)

    Cuβˆ—β’(X)subscriptsuperscript𝐢𝑒𝑋C^{*}_{u}(X)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X ) is nuclear;

  3. (3)

    Cuβˆ—β’(X)subscriptsuperscript𝐢𝑒𝑋C^{*}_{u}(X)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X ) is exact.

Using this result we can modify the definition of property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A.

Lemma 4.3.

Let ρ,Οƒβˆˆβ„¬β’π’’β’(X,d)πœŒπœŽβ„¬π’’π‘‹π‘‘\rho,\sigma\in\mathcal{B}\mathcal{G}(X,d)italic_ρ , italic_Οƒ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ), Οƒβͺ―cρsubscriptprecedes-or-equalsπ‘πœŽπœŒ\sigma\preceq_{c}\rhoitalic_Οƒ βͺ― start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_ρ. If (X,ρ)π‘‹πœŒ(X,\rho)( italic_X , italic_ρ ) satisfies property A then (X,Οƒ)π‘‹πœŽ(X,\sigma)( italic_X , italic_Οƒ ) satisfies property A too.

Proof.

By Lemma 4.1, Cuβˆ—β’(X,Οƒ)βŠ‚Cuβˆ—β’(X,ρ)subscriptsuperscriptπΆπ‘’π‘‹πœŽsubscriptsuperscriptπΆπ‘’π‘‹πœŒC^{*}_{u}(X,\sigma)\subset C^{*}_{u}(X,\rho)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_Οƒ ) βŠ‚ italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_ρ ) is a Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-subalgebra. Property A for (X,ρ)π‘‹πœŒ(X,\rho)( italic_X , italic_ρ ) iplies that Cuβˆ—β’(X,ρ)subscriptsuperscriptπΆπ‘’π‘‹πœŒC^{*}_{u}(X,\rho)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_ρ ) is exact. As Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-subalgebras of exact Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-algebras are exact, Cuβˆ—β’(X,Οƒ)subscriptsuperscriptπΆπ‘’π‘‹πœŽC^{*}_{u}(X,\sigma)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_Οƒ ) is exact, therefore, (X,Οƒ)π‘‹πœŽ(X,\sigma)( italic_X , italic_Οƒ ) has property A. ∎

Remark 4.4.

It is challenging to find a direct geometric proof of this geometric result.

Corollary 4.5.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a uniformly discrete space. It has property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A iff (X,Οƒ)π‘‹πœŽ(X,\sigma)( italic_X , italic_Οƒ ) has property A for any Οƒβˆˆβ„¬β’π’’β’(X,d)πœŽβ„¬π’’π‘‹π‘‘\sigma\in\mathcal{B}\mathcal{G}(X,d)italic_Οƒ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ).

For discrete spaces without bounded geometry (but uniformly discrete) Theorem 4.2 does not hold. In particular, if X𝑋Xitalic_X is an infinite space of finite diameter then Cuβˆ—β’(X)subscriptsuperscript𝐢𝑒𝑋C^{*}_{u}(X)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X ) equals 𝔹⁒(l2⁒(X))𝔹subscript𝑙2𝑋\mathbb{B}(l_{2}(X))blackboard_B ( italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X ) ), which is far from being nuclear, while property A holds by trivial argument. This lead us to suggest in [3] a modification of the uniform Roe algebra for spaces without bounded geometry. Namely, as the set ℬ⁒𝒒⁒(X,d)ℬ𝒒𝑋𝑑\mathcal{B}\mathcal{G}(X,d)caligraphic_B caligraphic_G ( italic_X , italic_d ) is directed when (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) is uniformly discrete, we can set Cβ„¬β’π’’βˆ—β’(X,d)=dir⁒limΟβˆˆβ„¬β’π’’β’(X,d)Cuβˆ—β’(X,ρ)subscriptsuperscript𝐢ℬ𝒒𝑋𝑑dirsubscriptπœŒβ„¬π’’π‘‹π‘‘subscriptsuperscriptπΆπ‘’π‘‹πœŒC^{*}_{\mathcal{B}\mathcal{G}}(X,d)=\operatorname{dir}\lim_{\rho\in\mathcal{B}% \mathcal{G}(X,d)}C^{*}_{u}(X,\rho)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_B caligraphic_G end_POSTSUBSCRIPT ( italic_X , italic_d ) = roman_dir roman_lim start_POSTSUBSCRIPT italic_ρ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ) end_POSTSUBSCRIPT italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_ρ ). Clearly, if (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) is already of bounded geometry then Cβ„¬β’π’’βˆ—β’(X,d)=Cuβˆ—β’(X,d)subscriptsuperscript𝐢ℬ𝒒𝑋𝑑subscriptsuperscript𝐢𝑒𝑋𝑑C^{*}_{\mathcal{B}\mathcal{G}}(X,d)=C^{*}_{u}(X,d)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_B caligraphic_G end_POSTSUBSCRIPT ( italic_X , italic_d ) = italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_d ). For this modification it is easy to prove an analog of Theorem 4.2.

Theorem 4.6.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a uniformly discrete space. Then the following are equivalent:

  1. (1)

    (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) has property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A;

  2. (2)

    Cβ„¬β’π’’βˆ—β’(X,d)subscriptsuperscript𝐢ℬ𝒒𝑋𝑑C^{*}_{\mathcal{B}\mathcal{G}}(X,d)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_B caligraphic_G end_POSTSUBSCRIPT ( italic_X , italic_d ) is nuclear;

  3. (3)

    Cβ„¬β’π’’βˆ—β’(X,d)subscriptsuperscript𝐢ℬ𝒒𝑋𝑑C^{*}_{\mathcal{B}\mathcal{G}}(X,d)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_B caligraphic_G end_POSTSUBSCRIPT ( italic_X , italic_d ) is exact.

Proof.

If (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) has property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A then (X,ρ)π‘‹πœŒ(X,\rho)( italic_X , italic_ρ ) has property A for any Οβˆˆβ„¬β’π’’β’(X,d)πœŒβ„¬π’’π‘‹π‘‘\rho\in\mathcal{B}\mathcal{G}(X,d)italic_ρ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ), hence Cuβˆ—β’(X,ρ)subscriptsuperscriptπΆπ‘’π‘‹πœŒC^{*}_{u}(X,\rho)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_ρ ) is nuclear. The direct limit of nuclear Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-algebras is locally nuclear, hence nuclear, hence (1) implies (2). (2) obviously implies (3). To show that (3) implies (1), note that if Cβ„¬β’π’’βˆ—β’(X,d)subscriptsuperscript𝐢ℬ𝒒𝑋𝑑C^{*}_{\mathcal{B}\mathcal{G}}(X,d)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_B caligraphic_G end_POSTSUBSCRIPT ( italic_X , italic_d ) is exact then any its Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-subalgebra is exact, in particular, Cuβˆ—β’(X,ρ)subscriptsuperscriptπΆπ‘’π‘‹πœŒC^{*}_{u}(X,\rho)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_ρ ) for any Οβˆˆβ„¬β’π’’β’(X,d)πœŒβ„¬π’’π‘‹π‘‘\rho\in\mathcal{B}\mathcal{G}(X,d)italic_ρ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ), hence (X,ρ)π‘‹πœŒ(X,\rho)( italic_X , italic_ρ ) has property A. ∎

5. Example 1

In this section we show that some spaces without bounded geometry related to abelian groups, including thr Nowak’s example, have property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A.

Lemma 5.1.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a uniformly discrete metric space, and let a group G𝐺Gitalic_G acts transitively on X𝑋Xitalic_X. Let Οƒβˆˆβ„¬β’π’’β’(X,d)πœŽβ„¬π’’π‘‹π‘‘\sigma\in\mathcal{B}\mathcal{G}(X,d)italic_Οƒ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ). Then there exists a G𝐺Gitalic_G-invariant metric Οβˆˆβ„¬β’π’’β’(X,d)πœŒβ„¬π’’π‘‹π‘‘\rho\in\mathcal{B}\mathcal{G}(X,d)italic_ρ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ) such that Οƒβͺ―ρprecedes-or-equals𝜎𝜌\sigma\preceq\rhoitalic_Οƒ βͺ― italic_ρ.

Proof.

Set

ρ⁒(x,y)=infnβˆˆβ„•;g1,…,gn∈Gβˆ‘i=1nσ⁒(gi⁒xiβˆ’1,gi⁒xi),𝜌π‘₯𝑦subscriptinfimumformulae-sequence𝑛ℕsubscript𝑔1…subscript𝑔𝑛𝐺superscriptsubscript𝑖1π‘›πœŽsubscript𝑔𝑖subscriptπ‘₯𝑖1subscript𝑔𝑖subscriptπ‘₯𝑖\rho(x,y)=\inf_{n\in\mathbb{N};g_{1},\ldots,g_{n}\in G}\sum_{i=1}^{n}\sigma(g_% {i}x_{i-1},g_{i}x_{i}),italic_ρ ( italic_x , italic_y ) = roman_inf start_POSTSUBSCRIPT italic_n ∈ blackboard_N ; italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_G end_POSTSUBSCRIPT βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Οƒ ( italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ,

where x0=xsubscriptπ‘₯0π‘₯x_{0}=xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_x, xn=ysubscriptπ‘₯𝑛𝑦x_{n}=yitalic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_y, and all xisubscriptπ‘₯𝑖x_{i}italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, i=0,…,n𝑖0…𝑛i=0,\ldots,nitalic_i = 0 , … , italic_n are distinct. Then ρ𝜌\rhoitalic_ρ satisfies the triangle inequality. As d𝑑ditalic_d is uniformly discrete and Οƒβͺ―dprecedes-or-equalsπœŽπ‘‘\sigma\preceq ditalic_Οƒ βͺ― italic_d, ΟƒπœŽ\sigmaitalic_Οƒ is also uniformly discrete. Without loss of generality we may assume that d⁒(x,y)β‰₯1𝑑π‘₯𝑦1d(x,y)\geq 1italic_d ( italic_x , italic_y ) β‰₯ 1 for any two distinct points x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X. Clearly, ρ𝜌\rhoitalic_ρ is invariant, i.e. ρ⁒(g⁒x,g⁒y)=ρ⁒(x,y)πœŒπ‘”π‘₯π‘”π‘¦πœŒπ‘₯𝑦\rho(gx,gy)=\rho(x,y)italic_ρ ( italic_g italic_x , italic_g italic_y ) = italic_ρ ( italic_x , italic_y ) for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X and any g∈G𝑔𝐺g\in Gitalic_g ∈ italic_G. Setting n=1𝑛1n=1italic_n = 1 and g=e𝑔𝑒g=eitalic_g = italic_e, we see that ρ⁒(x,y)≀σ⁒(x,y)𝜌π‘₯π‘¦πœŽπ‘₯𝑦\rho(x,y)\leq\sigma(x,y)italic_ρ ( italic_x , italic_y ) ≀ italic_Οƒ ( italic_x , italic_y ), hence Οƒβͺ―ρprecedes-or-equals𝜎𝜌\sigma\preceq\rhoitalic_Οƒ βͺ― italic_ρ.

It remains to show that ρ𝜌\rhoitalic_ρ is of bounded geometry. By invariance and by transitivity, it suffices to show that the balls centered at some fixed point z∈X𝑧𝑋z\in Xitalic_z ∈ italic_X. Fix R>0𝑅0R>0italic_R > 0, and let |BRσ⁒(x)|≀CRsubscriptsuperscriptπ΅πœŽπ‘…π‘₯subscript𝐢𝑅|B^{\sigma}_{R}(x)|\leq C_{R}| italic_B start_POSTSUPERSCRIPT italic_Οƒ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_x ) | ≀ italic_C start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X.

Let ρ⁒(z,x)≀RπœŒπ‘§π‘₯𝑅\rho(z,x)\leq Ritalic_ρ ( italic_z , italic_x ) ≀ italic_R. Then there exist nβˆˆβ„•π‘›β„•n\in\mathbb{N}italic_n ∈ blackboard_N and g1,…,gn∈Gsubscript𝑔1…subscript𝑔𝑛𝐺g_{1},\ldots,g_{n}\in Gitalic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_G such that βˆ‘i=1nσ⁒(gi⁒xiβˆ’1,gi⁒xi)<R+1superscriptsubscript𝑖1π‘›πœŽsubscript𝑔𝑖subscriptπ‘₯𝑖1subscript𝑔𝑖subscriptπ‘₯𝑖𝑅1\sum_{i=1}^{n}\sigma(g_{i}x_{i-1},g_{i}x_{i})<R+1βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Οƒ ( italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) < italic_R + 1, where x0=zsubscriptπ‘₯0𝑧x_{0}=zitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_z, xn=xsubscriptπ‘₯𝑛π‘₯x_{n}=xitalic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_x. As each term satisfies

σ⁒(gi⁒xiβˆ’1,gi⁒xi)β‰₯d⁒(gi⁒xiβˆ’1,gi⁒xi)β‰₯1,𝜎subscript𝑔𝑖subscriptπ‘₯𝑖1subscript𝑔𝑖subscriptπ‘₯𝑖𝑑subscript𝑔𝑖subscriptπ‘₯𝑖1subscript𝑔𝑖subscriptπ‘₯𝑖1\sigma(g_{i}x_{i-1},g_{i}x_{i})\geq d(g_{i}x_{i-1},g_{i}x_{i})\geq 1,italic_Οƒ ( italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) β‰₯ italic_d ( italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) β‰₯ 1 ,

we have n<R+1𝑛𝑅1n<R+1italic_n < italic_R + 1. It also follows that σ⁒(gi⁒xiβˆ’1,gi⁒xi)<R+1𝜎subscript𝑔𝑖subscriptπ‘₯𝑖1subscript𝑔𝑖subscriptπ‘₯𝑖𝑅1\sigma(g_{i}x_{i-1},g_{i}x_{i})<R+1italic_Οƒ ( italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) < italic_R + 1 for each i=1,…,n𝑖1…𝑛i=1,\ldots,nitalic_i = 1 , … , italic_n.

Let F1={x1∈X:σ⁒(g1⁒z,g1⁒x1)<R+1}subscript𝐹1conditional-setsubscriptπ‘₯1π‘‹πœŽsubscript𝑔1𝑧subscript𝑔1subscriptπ‘₯1𝑅1F_{1}=\{x_{1}\in X:\sigma(g_{1}z,g_{1}x_{1})<R+1\}italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = { italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_X : italic_Οƒ ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_z , italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) < italic_R + 1 }. Then g1⁒F1=BR+1σ⁒(g1⁒z)subscript𝑔1subscript𝐹1subscriptsuperscriptπ΅πœŽπ‘…1subscript𝑔1𝑧g_{1}F_{1}=B^{\sigma}_{R+1}(g_{1}z)italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_B start_POSTSUPERSCRIPT italic_Οƒ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_R + 1 end_POSTSUBSCRIPT ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_z ), hence |F1|≀CR+1subscript𝐹1subscript𝐢𝑅1|F_{1}|\leq C_{R+1}| italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | ≀ italic_C start_POSTSUBSCRIPT italic_R + 1 end_POSTSUBSCRIPT. Similarly, for each x1∈F1subscriptπ‘₯1subscript𝐹1x_{1}\in F_{1}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, there are not more than CR+1subscript𝐢𝑅1C_{R+1}italic_C start_POSTSUBSCRIPT italic_R + 1 end_POSTSUBSCRIPT points x2subscriptπ‘₯2x_{2}italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that σ⁒(g2⁒x1,g2⁒x2)<R+1𝜎subscript𝑔2subscriptπ‘₯1subscript𝑔2subscriptπ‘₯2𝑅1\sigma(g_{2}x_{1},g_{2}x_{2})<R+1italic_Οƒ ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) < italic_R + 1. Proceeding, we see that there are not more than CR+1R+1superscriptsubscript𝐢𝑅1𝑅1C_{R+1}^{R+1}italic_C start_POSTSUBSCRIPT italic_R + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R + 1 end_POSTSUPERSCRIPT points xnsubscriptπ‘₯𝑛x_{n}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that σ⁒(gi⁒xiβˆ’1,gi⁒xi)<R+1𝜎subscript𝑔𝑖subscriptπ‘₯𝑖1subscript𝑔𝑖subscriptπ‘₯𝑖𝑅1\sigma(g_{i}x_{i-1},g_{i}x_{i})<R+1italic_Οƒ ( italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) < italic_R + 1 for each i=1,…,n𝑖1…𝑛i=1,\ldots,nitalic_i = 1 , … , italic_n. Thus, |BRρ⁒(z)|≀CR+1R+1subscriptsuperscriptπ΅πœŒπ‘…π‘§superscriptsubscript𝐢𝑅1𝑅1|B^{\rho}_{R}(z)|\leq C_{R+1}^{R+1}| italic_B start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_z ) | ≀ italic_C start_POSTSUBSCRIPT italic_R + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R + 1 end_POSTSUPERSCRIPT. ∎

Let G𝐺Gitalic_G be a finite group with a metric dGsubscript𝑑𝐺d_{G}italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT, and let X=Gβˆžπ‘‹superscript𝐺X=G^{\infty}italic_X = italic_G start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT. Then any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X can be written as a sequence x=(xi)iβˆˆβ„•π‘₯subscriptsubscriptπ‘₯𝑖𝑖ℕx=(x_{i})_{i\in\mathbb{N}}italic_x = ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT with xi∈Gsubscriptπ‘₯𝑖𝐺x_{i}\in Gitalic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_G, and xi=0subscriptπ‘₯𝑖0x_{i}=0italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 0 for sufficiently great i𝑖iitalic_i. Let π’žπ’ž\mathcal{C}caligraphic_C denote the set of all sequences c={ci}iβˆˆβ„•π‘subscriptsubscript𝑐𝑖𝑖ℕc=\{c_{i}\}_{i\in\mathbb{N}}italic_c = { italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT such that

  • (c1)

    ciβ‰₯1subscript𝑐𝑖1c_{i}\geq 1italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‰₯ 1 for any iβˆˆβ„•π‘–β„•i\in\mathbb{N}italic_i ∈ blackboard_N;

  • (c2)

    ci≀ci+1subscript𝑐𝑖subscript𝑐𝑖1c_{i}\leq c_{i+1}italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≀ italic_c start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT for any iβˆˆβ„•π‘–β„•i\in\mathbb{N}italic_i ∈ blackboard_N;

  • (c3)

    limiβ†’βˆžci=∞subscript→𝑖subscript𝑐𝑖\lim_{i\to\infty}c_{i}=\inftyroman_lim start_POSTSUBSCRIPT italic_i β†’ ∞ end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ∞.

Then a sequence cβˆˆπ’žπ‘π’žc\in\mathcal{C}italic_c ∈ caligraphic_C determines a weighted length metric ρcsubscriptπœŒπ‘\rho_{c}italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT on X𝑋Xitalic_X by ρc⁒(x,y)=βˆ‘iβˆˆβ„•ci⁒dG⁒(xi,yi)subscriptπœŒπ‘π‘₯𝑦subscript𝑖ℕsubscript𝑐𝑖subscript𝑑𝐺subscriptπ‘₯𝑖subscript𝑦𝑖\rho_{c}(x,y)=\sum_{i\in\mathbb{N}}c_{i}d_{G}(x_{i},y_{i})italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_x , italic_y ) = βˆ‘ start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ). Under the above assumptions on c𝑐citalic_c, the metrics ρcsubscriptπœŒπ‘\rho_{c}italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT are of bounded geometry. We also consider the metric d𝑑ditalic_d on G∞superscript𝐺G^{\infty}italic_G start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT given by d⁒(x,y)=βˆ‘iβˆˆβ„•dG⁒(xi,yi)𝑑π‘₯𝑦subscript𝑖ℕsubscript𝑑𝐺subscriptπ‘₯𝑖subscript𝑦𝑖d(x,y)=\sum_{i\in\mathbb{N}}d_{G}(x_{i},y_{i})italic_d ( italic_x , italic_y ) = βˆ‘ start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) (note that (1,1,…)βˆ‰π’ž11β€¦π’ž(1,1,\ldots)\notin\mathcal{C}( 1 , 1 , … ) βˆ‰ caligraphic_C). Clearly, dβͺ―ρcprecedes-or-equals𝑑subscriptπœŒπ‘d\preceq\rho_{c}italic_d βͺ― italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT for any c𝑐citalic_c.

Similarly, let Y=βŠ”iβˆˆβ„•Giπ‘Œsubscriptsquare-union𝑖ℕsuperscript𝐺𝑖Y=\sqcup_{i\in\mathbb{N}}G^{i}italic_Y = βŠ” start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT italic_G start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT be the coarse union of Gisuperscript𝐺𝑖G^{i}italic_G start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT, iβˆˆβ„•π‘–β„•i\in\mathbb{N}italic_i ∈ blackboard_N, with the (generalized) metric d𝑑ditalic_d such that d|Gi=dGevaluated-at𝑑superscript𝐺𝑖subscript𝑑𝐺d|_{G^{i}}=d_{G}italic_d | start_POSTSUBSCRIPT italic_G start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT, and d⁒(x,y)=βˆžπ‘‘π‘₯𝑦d(x,y)=\inftyitalic_d ( italic_x , italic_y ) = ∞ if x∈Giπ‘₯superscript𝐺𝑖x\in G^{i}italic_x ∈ italic_G start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT, y∈Gj𝑦superscript𝐺𝑗y\in G^{j}italic_y ∈ italic_G start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT, iβ‰ j𝑖𝑗i\neq jitalic_i β‰  italic_j (or we may set the latter distances to be finite but sufficiently greater than diameters of Gisuperscript𝐺𝑖G^{i}italic_G start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT’s).

Lemma 5.2.

Let Οƒβˆˆβ„¬β’π’’β’(X,d)πœŽβ„¬π’’π‘‹π‘‘\sigma\in\mathcal{B}\mathcal{G}(X,d)italic_Οƒ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ) (resp., Οƒβˆˆβ„¬β’π’’β’(Y,d)πœŽβ„¬π’’π‘Œπ‘‘\sigma\in\mathcal{B}\mathcal{G}(Y,d)italic_Οƒ ∈ caligraphic_B caligraphic_G ( italic_Y , italic_d )) be invariant under translations by X𝑋Xitalic_X. Then there exists cβˆˆπ’žπ‘π’žc\in\mathcal{C}italic_c ∈ caligraphic_C such that ρc⁒(x,y)≀(σ⁒(x,y)+1)2subscriptπœŒπ‘π‘₯𝑦superscript𝜎π‘₯𝑦12\rho_{c}(x,y)\leq(\sigma(x,y)+1)^{2}italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_x , italic_y ) ≀ ( italic_Οƒ ( italic_x , italic_y ) + 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X (resp., ∈Yabsentπ‘Œ\in Y∈ italic_Y).

Proof.

The argument is the same for Yπ‘ŒYitalic_Y and for X𝑋Xitalic_X, so we give it only for X𝑋Xitalic_X. Due to invariance, we may assume that y=eX=(e,e⁒…)𝑦subscript𝑒𝑋𝑒𝑒…y=e_{X}=(e,e\ldots)italic_y = italic_e start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = ( italic_e , italic_e … ), where e∈G𝑒𝐺e\in Gitalic_e ∈ italic_G is the neutral element. For shortness’ sake we write d⁒(x)𝑑π‘₯d(x)italic_d ( italic_x ) (resp., σ⁒(x)𝜎π‘₯\sigma(x)italic_Οƒ ( italic_x ), dG⁒(x)subscript𝑑𝐺π‘₯d_{G}(x)italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_x ), etc.) for d⁒(x,eX)𝑑π‘₯subscript𝑒𝑋d(x,e_{X})italic_d ( italic_x , italic_e start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) (resp., σ⁒(x,eX)𝜎π‘₯subscript𝑒𝑋\sigma(x,e_{X})italic_Οƒ ( italic_x , italic_e start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ), dG⁒(xi,e)subscript𝑑𝐺subscriptπ‘₯𝑖𝑒d_{G}(x_{i},e)italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_e ), etc.). For nβˆˆβ„•π‘›β„•n\in\mathbb{N}italic_n ∈ blackboard_N, consider the ball Bnσ⁒(eX)subscriptsuperscriptπ΅πœŽπ‘›subscript𝑒𝑋B^{\sigma}_{n}(e_{X})italic_B start_POSTSUPERSCRIPT italic_Οƒ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_e start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ). As ΟƒπœŽ\sigmaitalic_Οƒ is of bounded geometry, this ball contains finitely many points, and as each point in X𝑋Xitalic_X has finitely many coordinates different from e𝑒eitalic_e, x∈Bnσ⁒(eX)π‘₯subscriptsuperscriptπ΅πœŽπ‘›subscript𝑒𝑋x\in B^{\sigma}_{n}(e_{X})italic_x ∈ italic_B start_POSTSUPERSCRIPT italic_Οƒ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_e start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) implies that there is some knβˆˆβ„•subscriptπ‘˜π‘›β„•k_{n}\in\mathbb{N}italic_k start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ blackboard_N such that xi=esubscriptπ‘₯𝑖𝑒x_{i}=eitalic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_e for all i>kn𝑖subscriptπ‘˜π‘›i>k_{n}italic_i > italic_k start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Let nβˆ’1<σ⁒(x)≀n𝑛1𝜎π‘₯𝑛n-1<\sigma(x)\leq nitalic_n - 1 < italic_Οƒ ( italic_x ) ≀ italic_n. As σ⁒(x)β‰₯d⁒(x)𝜎π‘₯𝑑π‘₯\sigma(x)\geq d(x)italic_Οƒ ( italic_x ) β‰₯ italic_d ( italic_x ), we have d⁒(x)=βˆ‘i=1kndG⁒(xi)≀n𝑑π‘₯superscriptsubscript𝑖1subscriptπ‘˜π‘›subscript𝑑𝐺subscriptπ‘₯𝑖𝑛d(x)=\sum_{i=1}^{k_{n}}d_{G}(x_{i})\leq nitalic_d ( italic_x ) = βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≀ italic_n. Then

ρc⁒(x)=βˆ‘i=1knci⁒dG⁒(xi)≀max⁑(c1,…,ckn)β’βˆ‘i=1kndG⁒(xi)=ckn⁒d⁒(x)≀ckn⁒n.subscriptπœŒπ‘π‘₯superscriptsubscript𝑖1subscriptπ‘˜π‘›subscript𝑐𝑖subscript𝑑𝐺subscriptπ‘₯𝑖subscript𝑐1…subscript𝑐subscriptπ‘˜π‘›superscriptsubscript𝑖1subscriptπ‘˜π‘›subscript𝑑𝐺subscriptπ‘₯𝑖subscript𝑐subscriptπ‘˜π‘›π‘‘π‘₯subscript𝑐subscriptπ‘˜π‘›π‘›\rho_{c}(x)=\sum_{i=1}^{k_{n}}c_{i}d_{G}(x_{i})\leq\max(c_{1},\ldots,c_{k_{n}}% )\sum_{i=1}^{k_{n}}d_{G}(x_{i})=c_{k_{n}}d(x)\leq c_{k_{n}}n.italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_x ) = βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≀ roman_max ( italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_c start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_c start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_d ( italic_x ) ≀ italic_c start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_n .

Set ckn=nsubscript𝑐subscriptπ‘˜π‘›π‘›c_{k_{n}}=nitalic_c start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_n. Then ρc⁒(x)≀n2≀(σ⁒(x)+1)2subscriptπœŒπ‘π‘₯superscript𝑛2superscript𝜎π‘₯12\rho_{c}(x)\leq n^{2}\leq(\sigma(x)+1)^{2}italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_x ) ≀ italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≀ ( italic_Οƒ ( italic_x ) + 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X. ∎

Theorem 5.3.

Let G𝐺Gitalic_G be a finite group. Then X=Gβˆžπ‘‹superscript𝐺X=G^{\infty}italic_X = italic_G start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT and Y=βŠ”iβˆˆβ„•Giπ‘Œsubscriptsquare-union𝑖ℕsuperscript𝐺𝑖Y=\sqcup_{i\in\mathbb{N}}G^{i}italic_Y = βŠ” start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT italic_G start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT have property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A.

Proof.

Once again we restrict ourselves to the case of X𝑋Xitalic_X. Let Οƒβˆˆβ„¬β’π’’β’(X,d)πœŽβ„¬π’’π‘‹π‘‘\sigma\in\mathcal{B}\mathcal{G}(X,d)italic_Οƒ ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ). Combining Lemmas 5.1 and 5.2, there exists a sequence cβˆˆπ’žπ‘π’žc\in\mathcal{C}italic_c ∈ caligraphic_C such that the metric ρcβˆˆβ„¬β’π’’β’(X,d)subscriptπœŒπ‘β„¬π’’π‘‹π‘‘\rho_{c}\in\mathcal{B}\mathcal{G}(X,d)italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d ) satisfies ρc⁒(x,y)≀(σ⁒(x,y)+1)2subscriptπœŒπ‘π‘₯𝑦superscript𝜎π‘₯𝑦12\rho_{c}(x,y)\leq(\sigma(x,y)+1)^{2}italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_x , italic_y ) ≀ ( italic_Οƒ ( italic_x , italic_y ) + 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X.

Let R=n𝑅𝑛R=nitalic_R = italic_n, Ξ΅πœ€\varepsilonitalic_Ξ΅ arbitrary. Let i⁒(n)𝑖𝑛i(n)italic_i ( italic_n ) satisfy ci⁒(n)>nsubscript𝑐𝑖𝑛𝑛c_{i(n)}>nitalic_c start_POSTSUBSCRIPT italic_i ( italic_n ) end_POSTSUBSCRIPT > italic_n. As limiβ†’βˆžci=∞subscript→𝑖subscript𝑐𝑖\lim_{i\to\infty}c_{i}=\inftyroman_lim start_POSTSUBSCRIPT italic_i β†’ ∞ end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ∞, such i⁒(n)𝑖𝑛i(n)italic_i ( italic_n ) exists. Set

ΞΎx⁒(z)={Ξ±, if β’xi=zi⁒ for β’i>i⁒(n);0,otherwise,subscriptπœ‰π‘₯𝑧cases𝛼 if subscriptπ‘₯𝑖subscript𝑧𝑖 for π‘–𝑖𝑛0otherwise\xi_{x}(z)=\left\{\begin{array}[]{cl}\alpha,&\mbox{\ if\ }x_{i}=z_{i}\mbox{\ % for\ }i>i(n);\\ 0,&\mbox{otherwise},\end{array}\right.italic_ΞΎ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_z ) = { start_ARRAY start_ROW start_CELL italic_Ξ± , end_CELL start_CELL if italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for italic_i > italic_i ( italic_n ) ; end_CELL end_ROW start_ROW start_CELL 0 , end_CELL start_CELL otherwise , end_CELL end_ROW end_ARRAY

where α𝛼\alphaitalic_Ξ± is chosen to satisfy β€–ΞΎxβ€–=1normsubscriptπœ‰π‘₯1\|\xi_{x}\|=1βˆ₯ italic_ΞΎ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT βˆ₯ = 1. If ρc⁒(x,y)=βˆ‘iβˆˆβ„•ci⁒dG⁒(xi,yi)<nsubscriptπœŒπ‘π‘₯𝑦subscript𝑖ℕsubscript𝑐𝑖subscript𝑑𝐺subscriptπ‘₯𝑖subscript𝑦𝑖𝑛\rho_{c}(x,y)=\sum_{i\in\mathbb{N}}c_{i}d_{G}(x_{i},y_{i})<nitalic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_x , italic_y ) = βˆ‘ start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) < italic_n then xi=yisubscriptπ‘₯𝑖subscript𝑦𝑖x_{i}=y_{i}italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for any i>i⁒(n)𝑖𝑖𝑛i>i(n)italic_i > italic_i ( italic_n ). Then ΞΎxβˆ’ΞΎy=0subscriptπœ‰π‘₯subscriptπœ‰π‘¦0\xi_{x}-\xi_{y}=0italic_ΞΎ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT - italic_ΞΎ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT = 0, hence ΞΎπœ‰\xiitalic_ΞΎ has (n,Ξ΅)π‘›πœ€(n,\varepsilon)( italic_n , italic_Ξ΅ ) variation with respect to the metric ρcsubscriptπœŒπ‘\rho_{c}italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT. If z∈supp⁑ξx𝑧suppsubscriptπœ‰π‘₯z\in\operatorname{supp}\xi_{x}italic_z ∈ roman_supp italic_ΞΎ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT then xi=zisubscriptπ‘₯𝑖subscript𝑧𝑖x_{i}=z_{i}italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for any i>i⁒(n)𝑖𝑖𝑛i>i(n)italic_i > italic_i ( italic_n ), hence ρc⁒(x,y)≀max⁑(c1,…,ci⁒(n))⁒i⁒(n)⁒diam⁑(G)=n⁒i⁒(n)⁒diam⁑(G)subscriptπœŒπ‘π‘₯𝑦subscript𝑐1…subscript𝑐𝑖𝑛𝑖𝑛diam𝐺𝑛𝑖𝑛diam𝐺\rho_{c}(x,y)\leq\max(c_{1},\ldots,c_{i(n)})i(n)\operatorname{diam}(G)=ni(n)% \operatorname{diam}(G)italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_x , italic_y ) ≀ roman_max ( italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_c start_POSTSUBSCRIPT italic_i ( italic_n ) end_POSTSUBSCRIPT ) italic_i ( italic_n ) roman_diam ( italic_G ) = italic_n italic_i ( italic_n ) roman_diam ( italic_G ), and we can set S=S⁒(c,n,Ξ΅)=n⁒i⁒(n)⁒diam⁑(G)π‘†π‘†π‘π‘›πœ€π‘›π‘–π‘›diam𝐺S=S(c,n,\varepsilon)=ni(n)\operatorname{diam}(G)italic_S = italic_S ( italic_c , italic_n , italic_Ξ΅ ) = italic_n italic_i ( italic_n ) roman_diam ( italic_G ). ∎

6. Example 2

Let Z𝑍Zitalic_Z be the countable metric space with the metric d𝑑ditalic_d such that d⁒(x,y)=1𝑑π‘₯𝑦1d(x,y)=1italic_d ( italic_x , italic_y ) = 1 for any distinct points x,y∈Zπ‘₯𝑦𝑍x,y\in Zitalic_x , italic_y ∈ italic_Z. It is obviously of unbounded geometry, coarsely equivalent to a single point, and satisfies the standard version of property (A). Nevertheless,

Theorem 6.1.

The space (Z,d)𝑍𝑑(Z,d)( italic_Z , italic_d ) does not have property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A.

Proof.

Assume the contrary. Then Cℬ⁒𝒒⁒(Z,d)βˆ—subscriptsuperscript𝐢ℬ𝒒𝑍𝑑C^{*}_{\mathcal{B}\mathcal{G}(Z,d)}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_B caligraphic_G ( italic_Z , italic_d ) end_POSTSUBSCRIPT is exact by Theorem 4.2. Let us show that there exists Οβˆˆβ„¬β’π’’β’(Z,d)πœŒβ„¬π’’π‘π‘‘\rho\in\mathcal{B}\mathcal{G}(Z,d)italic_ρ ∈ caligraphic_B caligraphic_G ( italic_Z , italic_d ) such that the space (Z,ρ)π‘πœŒ(Z,\rho)( italic_Z , italic_ρ ) does not have property A. Let {Gn}nβˆˆβ„•subscriptsubscript𝐺𝑛𝑛ℕ\{G_{n}\}_{n\in\mathbb{N}}{ italic_G start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ∈ blackboard_N end_POSTSUBSCRIPT be a sequence of finite graphs that form an expander, and let ρ𝜌\rhoitalic_ρ be a metric such that (Z,ρ)π‘πœŒ(Z,\rho)( italic_Z , italic_ρ ) is isometric to the coarse union βŠ”nβˆˆβ„•Gnsubscriptsquare-union𝑛ℕsubscript𝐺𝑛\sqcup_{n\in\mathbb{N}}G_{n}βŠ” start_POSTSUBSCRIPT italic_n ∈ blackboard_N end_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT after identifying points of Z𝑍Zitalic_Z with the vertices of βŠ”nβˆˆβ„•Gnsubscriptsquare-union𝑛ℕsubscript𝐺𝑛\sqcup_{n\in\mathbb{N}}G_{n}βŠ” start_POSTSUBSCRIPT italic_n ∈ blackboard_N end_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Being an expander, (X,ρ)π‘‹πœŒ(X,\rho)( italic_X , italic_ρ ) has bounded geometry and does not have property A (it is shown in [5, Corollary 1.2] that the uniform Roe algebra of an expander is not exact). This contradicts the assumed exactness of Cβ„¬β’π’’βˆ—β’(Z,d)subscriptsuperscript𝐢ℬ𝒒𝑍𝑑C^{*}_{\mathcal{B}\mathcal{G}}(Z,d)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_B caligraphic_G end_POSTSUBSCRIPT ( italic_Z , italic_d ), as Cuβˆ—β’(Z,ρ)subscriptsuperscriptπΆπ‘’π‘πœŒC^{*}_{u}(Z,\rho)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_Z , italic_ρ ) is its Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-subalgebra. ∎

The Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-algebra Cβ„¬β’π’’βˆ—β’(Z,d)subscriptsuperscript𝐢ℬ𝒒𝑍𝑑C^{*}_{\mathcal{B}\mathcal{G}}(Z,d)italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_B caligraphic_G end_POSTSUBSCRIPT ( italic_Z , italic_d ) was described in [2].

This example shows that property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A is not coarsely equivalent and hints to a more subtle equivalence relation, which we introduce in the next section.

7. ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-coarse equivalence

Recall that, given metric spaces (X,dX)𝑋subscript𝑑𝑋(X,d_{X})( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,dY)π‘Œsubscriptπ‘‘π‘Œ(Y,d_{Y})( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ), a map f:Xβ†’Y:π‘“β†’π‘‹π‘Œf:X\to Yitalic_f : italic_X β†’ italic_Y is coarse if there exists a homeomorphism Οˆπœ“\psiitalic_ψ of (0,∞]0(0,\infty]( 0 , ∞ ] such that dY⁒(f⁒(x),f⁒(y))β‰€Οˆβ’(dX⁒(x,y))subscriptπ‘‘π‘Œπ‘“π‘₯π‘“π‘¦πœ“subscript𝑑𝑋π‘₯𝑦d_{Y}(f(x),f(y))\leq\psi(d_{X}(x,y))italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_f ( italic_x ) , italic_f ( italic_y ) ) ≀ italic_ψ ( italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x , italic_y ) ) for any x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X. A self-map h:Xβ†’X:β„Žβ†’π‘‹π‘‹h:X\to Xitalic_h : italic_X β†’ italic_X is close to identity with respect to dXsubscript𝑑𝑋d_{X}italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT (we write h∼dXidXsubscriptsimilar-tosubscriptπ‘‘π‘‹β„Žsubscriptid𝑋h\sim_{d_{X}}\operatorname{id}_{X}italic_h ∼ start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_id start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT) if there exists C>0𝐢0C>0italic_C > 0 such that dX⁒(x,h⁒(x))≀Csubscript𝑑𝑋π‘₯β„Žπ‘₯𝐢d_{X}(x,h(x))\leq Citalic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x , italic_h ( italic_x ) ) ≀ italic_C for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X. (X,dX)𝑋subscript𝑑𝑋(X,d_{X})( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,dY)π‘Œsubscriptπ‘‘π‘Œ(Y,d_{Y})( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) are coarsely equivalent if there exist coarse maps f:Xβ†’Y:π‘“β†’π‘‹π‘Œf:X\to Yitalic_f : italic_X β†’ italic_Y, g:Yβ†’X:π‘”β†’π‘Œπ‘‹g:Y\to Xitalic_g : italic_Y β†’ italic_X such that g∘f∼dXidXsubscriptsimilar-tosubscript𝑑𝑋𝑔𝑓subscriptid𝑋g\circ f\sim_{d_{X}}\operatorname{id}_{X}italic_g ∘ italic_f ∼ start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_id start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT and f∘g∼dYidYsubscriptsimilar-tosubscriptπ‘‘π‘Œπ‘“π‘”subscriptidπ‘Œf\circ g\sim_{d_{Y}}\operatorname{id}_{Y}italic_f ∘ italic_g ∼ start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_id start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT.

Theorem 7.1.

Let (X,dX)𝑋subscript𝑑𝑋(X,d_{X})( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,dY)π‘Œsubscriptπ‘‘π‘Œ(Y,d_{Y})( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) be uniformly discrete metric spaces, and let f:Xβ†’Y:π‘“β†’π‘‹π‘Œf:X\to Yitalic_f : italic_X β†’ italic_Y and g:Yβ†’X:π‘”β†’π‘Œπ‘‹g:Y\to Xitalic_g : italic_Y β†’ italic_X be coarse maps such that g∘f∼dXidXsubscriptsimilar-tosubscript𝑑𝑋𝑔𝑓subscriptid𝑋g\circ f\sim_{d_{X}}\operatorname{id}_{X}italic_g ∘ italic_f ∼ start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_id start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT and f∘g∼dYidysubscriptsimilar-tosubscriptπ‘‘π‘Œπ‘“π‘”subscriptid𝑦f\circ g\sim_{d_{Y}}\operatorname{id}_{y}italic_f ∘ italic_g ∼ start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_id start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT. Then the following are equivalent:

  1. (1)

    there exists Nβˆˆβ„•π‘β„•N\in\mathbb{N}italic_N ∈ blackboard_N such that |gβˆ’1⁒(x)|≀Nsuperscript𝑔1π‘₯𝑁|g^{-1}(x)|\leq N| italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_x ) | ≀ italic_N for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X and |fβˆ’1⁒(y)|≀Nsuperscript𝑓1𝑦𝑁|f^{-1}(y)|\leq N| italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y ) | ≀ italic_N for any y∈Yπ‘¦π‘Œy\in Yitalic_y ∈ italic_Y;

  2. (2)

    for any ΟƒXβˆˆβ„¬β’π’’β’(X,dX)subscriptπœŽπ‘‹β„¬π’’π‘‹subscript𝑑𝑋\sigma_{X}\in\mathcal{B}\mathcal{G}(X,d_{X})italic_Οƒ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) there exists ρXβˆˆβ„¬β’π’’β’(X,dX)subscriptπœŒπ‘‹β„¬π’’π‘‹subscript𝑑𝑋\rho_{X}\in\mathcal{B}\mathcal{G}(X,d_{X})italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) such that ΟƒXβͺ―ρXprecedes-or-equalssubscriptπœŽπ‘‹subscriptπœŒπ‘‹\sigma_{X}\preceq\rho_{X}italic_Οƒ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT βͺ― italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, and ρYβˆˆβ„¬β’π’’β’(Y,dY)subscriptπœŒπ‘Œβ„¬π’’π‘Œsubscriptπ‘‘π‘Œ\rho_{Y}\in\mathcal{B}\mathcal{G}(Y,d_{Y})italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) (and, symmetrically, for any ΟƒYβˆˆβ„¬β’π’’β’(Y,dY)subscriptπœŽπ‘Œβ„¬π’’π‘Œsubscriptπ‘‘π‘Œ\sigma_{Y}\in\mathcal{B}\mathcal{G}(Y,d_{Y})italic_Οƒ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) there exists ρYβˆˆβ„¬β’π’’β’(Y,dY)subscriptπœŒπ‘Œβ„¬π’’π‘Œsubscriptπ‘‘π‘Œ\rho_{Y}\in\mathcal{B}\mathcal{G}(Y,d_{Y})italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) such that ΟƒYβͺ―ρYprecedes-or-equalssubscriptπœŽπ‘ŒsubscriptπœŒπ‘Œ\sigma_{Y}\preceq\rho_{Y}italic_Οƒ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT βͺ― italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT, and ρXβˆˆβ„¬β’π’’β’(X,dX)subscriptπœŒπ‘‹β„¬π’’π‘‹subscript𝑑𝑋\rho_{X}\in\mathcal{B}\mathcal{G}(X,d_{X})italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT )) such that f𝑓fitalic_f and g𝑔gitalic_g determine coarse equivalence between (X,ρX)𝑋subscriptπœŒπ‘‹(X,\rho_{X})( italic_X , italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,ρY)π‘ŒsubscriptπœŒπ‘Œ(Y,\rho_{Y})( italic_Y , italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ).

Proof.

If (2) holds then there are bounded geometry metrics ρXsubscriptπœŒπ‘‹\rho_{X}italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT and ρYsubscriptπœŒπ‘Œ\rho_{Y}italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT determining coarse equivalence between (X,ρX)𝑋subscriptπœŒπ‘‹(X,\rho_{X})( italic_X , italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,ρY)π‘ŒsubscriptπœŒπ‘Œ(Y,\rho_{Y})( italic_Y , italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ). As f𝑓fitalic_f and g𝑔gitalic_g determine coarse equivalence between (X,ρX)𝑋subscriptπœŒπ‘‹(X,\rho_{X})( italic_X , italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,ρY)π‘ŒsubscriptπœŒπ‘Œ(Y,\rho_{Y})( italic_Y , italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ), there exists C>0𝐢0C>0italic_C > 0 such that ρX⁒(z,g∘f⁒(z))≀CsubscriptπœŒπ‘‹π‘§π‘”π‘“π‘§πΆ\rho_{X}(z,g\circ f(z))\leq Citalic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_z , italic_g ∘ italic_f ( italic_z ) ) ≀ italic_C for any z∈X𝑧𝑋z\in Xitalic_z ∈ italic_X. Let y∈Yπ‘¦π‘Œy\in Yitalic_y ∈ italic_Y. If fβˆ’1⁒(y)=βˆ…superscript𝑓1𝑦f^{-1}(y)=\emptysetitalic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y ) = βˆ… then there is nothing to prove, so suppose that there is x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X with f⁒(x)=y𝑓π‘₯𝑦f(x)=yitalic_f ( italic_x ) = italic_y. If z∈fβˆ’1⁒(y)𝑧superscript𝑓1𝑦z\in f^{-1}(y)italic_z ∈ italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y ), i.e. f⁒(z)=f⁒(x)=y𝑓𝑧𝑓π‘₯𝑦f(z)=f(x)=yitalic_f ( italic_z ) = italic_f ( italic_x ) = italic_y, then ρX⁒(z,g⁒(y))=ρX⁒(z,g∘f⁒(z))≀CsubscriptπœŒπ‘‹π‘§π‘”π‘¦subscriptπœŒπ‘‹π‘§π‘”π‘“π‘§πΆ\rho_{X}(z,g(y))=\rho_{X}(z,g\circ f(z))\leq Citalic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_z , italic_g ( italic_y ) ) = italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_z , italic_g ∘ italic_f ( italic_z ) ) ≀ italic_C, which implies that z∈BCρX⁒(g⁒(y))𝑧superscriptsubscript𝐡𝐢subscriptπœŒπ‘‹π‘”π‘¦z\in B_{C}^{\rho_{X}}(g(y))italic_z ∈ italic_B start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_g ( italic_y ) ), and, using bounded geometry of ρXsubscriptπœŒπ‘‹\rho_{X}italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, we may set N=maxu∈X⁑|BCρX⁒(u)|𝑁subscript𝑒𝑋superscriptsubscript𝐡𝐢subscriptπœŒπ‘‹π‘’N=\max_{u\in X}|B_{C}^{\rho_{X}}(u)|italic_N = roman_max start_POSTSUBSCRIPT italic_u ∈ italic_X end_POSTSUBSCRIPT | italic_B start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_u ) |. Then |fβˆ’1⁒(y)|≀Nsuperscript𝑓1𝑦𝑁|f^{-1}(y)|\leq N| italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y ) | ≀ italic_N for any y∈Yπ‘¦π‘Œy\in Yitalic_y ∈ italic_Y. Symmetrically, we can bound |gβˆ’1⁒(x)|superscript𝑔1π‘₯|g^{-1}(x)|| italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_x ) |.

Now suppose that (1) holds. We shall prove the first half of (2) (the second half is proved symmetrically).

Let ΟƒXβˆˆβ„¬β’π’’β’(X,dX)subscriptπœŽπ‘‹β„¬π’’π‘‹subscript𝑑𝑋\sigma_{X}\in\mathcal{B}\mathcal{G}(X,d_{X})italic_Οƒ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ). By Lemma 2.3, there exists Ο„Xβˆˆβ„¬β’π’’β’(X,dX)subscriptπœπ‘‹β„¬π’’π‘‹subscript𝑑𝑋\tau_{X}\in\mathcal{B}\mathcal{G}(X,d_{X})italic_Ο„ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) such that Ο„X⁒(x,g∘f⁒(x))=dX⁒(x,g∘f⁒(x))subscriptπœπ‘‹π‘₯𝑔𝑓π‘₯subscript𝑑𝑋π‘₯𝑔𝑓π‘₯\tau_{X}(x,g\circ f(x))=d_{X}(x,g\circ f(x))italic_Ο„ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x , italic_g ∘ italic_f ( italic_x ) ) = italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x , italic_g ∘ italic_f ( italic_x ) ) for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X. Then there exists ρXβˆˆβ„¬β’π’’β’(X,dX)subscriptπœŒπ‘‹β„¬π’’π‘‹subscript𝑑𝑋\rho_{X}\in\mathcal{B}\mathcal{G}(X,d_{X})italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) such that ΟƒX,Ο„Xβͺ―ρXprecedes-or-equalssubscriptπœŽπ‘‹subscriptπœπ‘‹subscriptπœŒπ‘‹\sigma_{X},\tau_{X}\preceq\rho_{X}italic_Οƒ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT , italic_Ο„ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT βͺ― italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT.

Set

ρY⁒(y1,y2)=ρX⁒(g⁒(y1),g⁒(y2))+dY⁒(y1,y2).subscriptπœŒπ‘Œsubscript𝑦1subscript𝑦2subscriptπœŒπ‘‹π‘”subscript𝑦1𝑔subscript𝑦2subscriptπ‘‘π‘Œsubscript𝑦1subscript𝑦2\rho_{Y}(y_{1},y_{2})=\rho_{X}(g(y_{1}),g(y_{2}))+d_{Y}(y_{1},y_{2}).italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_g ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_g ( italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) + italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) . (2)

Being a sum of a metric and a pseudometric, it is a metric. Clearly, ρYβͺ―dYprecedes-or-equalssubscriptπœŒπ‘Œsubscriptπ‘‘π‘Œ\rho_{Y}\preceq d_{Y}italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT βͺ― italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT. To check bounded geometry condition, let z∈BRρY⁒(y)𝑧superscriptsubscript𝐡𝑅subscriptπœŒπ‘Œπ‘¦z\in B_{R}^{\rho_{Y}}(y)italic_z ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_y ). Then ρY⁒(y,z)≀RsubscriptπœŒπ‘Œπ‘¦π‘§π‘…\rho_{Y}(y,z)\leq Ritalic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y , italic_z ) ≀ italic_R, hence ρX⁒(g⁒(y),g⁒(z))≀RsubscriptπœŒπ‘‹π‘”π‘¦π‘”π‘§π‘…\rho_{X}(g(y),g(z))\leq Ritalic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_g ( italic_y ) , italic_g ( italic_z ) ) ≀ italic_R, which implies that g⁒(z)∈BRρX⁒(g⁒(y))𝑔𝑧superscriptsubscript𝐡𝑅subscriptπœŒπ‘‹π‘”π‘¦g(z)\in B_{R}^{\rho_{X}}(g(y))italic_g ( italic_z ) ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_g ( italic_y ) ). There is C>0𝐢0C>0italic_C > 0 such that |BRρX⁒(x)|≀Csuperscriptsubscript𝐡𝑅subscriptπœŒπ‘‹π‘₯𝐢|B_{R}^{\rho_{X}}(x)|\leq C| italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_x ) | ≀ italic_C for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X, and for each u=g⁒(z)∈BRρX⁒(g⁒(y))𝑒𝑔𝑧superscriptsubscript𝐡𝑅subscriptπœŒπ‘‹π‘”π‘¦u=g(z)\in B_{R}^{\rho_{X}}(g(y))italic_u = italic_g ( italic_z ) ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_g ( italic_y ) ) there are not more than N𝑁Nitalic_N points z𝑧zitalic_z with g⁒(z)=u𝑔𝑧𝑒g(z)=uitalic_g ( italic_z ) = italic_u, so |BRρY⁒(y)|≀N⁒Csuperscriptsubscript𝐡𝑅subscriptπœŒπ‘Œπ‘¦π‘πΆ|B_{R}^{\rho_{Y}}(y)|\leq NC| italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_y ) | ≀ italic_N italic_C.

Next we check that g∘f∼ρXidXsubscriptsimilar-tosubscriptπœŒπ‘‹π‘”π‘“subscriptid𝑋g\circ f\sim_{\rho_{X}}\operatorname{id}_{X}italic_g ∘ italic_f ∼ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_id start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT and f∘g∼ρYidYsubscriptsimilar-tosubscriptπœŒπ‘Œπ‘“π‘”subscriptidπ‘Œf\circ g\sim_{\rho_{Y}}\operatorname{id}_{Y}italic_f ∘ italic_g ∼ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_id start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT. The first one obviously follows from the construction of ρXsubscriptπœŒπ‘‹\rho_{X}italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT: ρX⁒(x,g∘f⁒(x))=dX⁒(x,g∘f⁒(x))subscriptπœŒπ‘‹π‘₯𝑔𝑓π‘₯subscript𝑑𝑋π‘₯𝑔𝑓π‘₯\rho_{X}(x,g\circ f(x))=d_{X}(x,g\circ f(x))italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x , italic_g ∘ italic_f ( italic_x ) ) = italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x , italic_g ∘ italic_f ( italic_x ) ), and from g∘f∼dXidXsubscriptsimilar-tosubscript𝑑𝑋𝑔𝑓subscriptid𝑋g\circ f\sim_{d_{X}}\operatorname{id}_{X}italic_g ∘ italic_f ∼ start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_id start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT. Let C>0𝐢0C>0italic_C > 0 satisfy dY⁒(y,f∘g⁒(y))≀Csubscriptπ‘‘π‘Œπ‘¦π‘“π‘”π‘¦πΆd_{Y}(y,f\circ g(y))\leq Citalic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y , italic_f ∘ italic_g ( italic_y ) ) ≀ italic_C and dX⁒(x,g∘f⁒(x))≀Csubscript𝑑𝑋π‘₯𝑔𝑓π‘₯𝐢d_{X}(x,g\circ f(x))\leq Citalic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x , italic_g ∘ italic_f ( italic_x ) ) ≀ italic_C for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X, y∈Yπ‘¦π‘Œy\in Yitalic_y ∈ italic_Y. Then

ρY⁒(y,f∘g⁒(y))subscriptπœŒπ‘Œπ‘¦π‘“π‘”π‘¦\displaystyle\rho_{Y}(y,f\circ g(y))italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y , italic_f ∘ italic_g ( italic_y ) ) =\displaystyle== ρX⁒(g⁒(y),g∘f∘g⁒(y))+dY⁒(y,f∘g⁒(y))subscriptπœŒπ‘‹π‘”π‘¦π‘”π‘“π‘”π‘¦subscriptπ‘‘π‘Œπ‘¦π‘“π‘”π‘¦\displaystyle\rho_{X}(g(y),g\circ f\circ g(y))+d_{Y}(y,f\circ g(y))italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_g ( italic_y ) , italic_g ∘ italic_f ∘ italic_g ( italic_y ) ) + italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y , italic_f ∘ italic_g ( italic_y ) )
=\displaystyle== ρX⁒(x,g∘f⁒(x))+dY⁒(y,f∘g⁒(y))≀ 2⁒C,subscriptπœŒπ‘‹π‘₯𝑔𝑓π‘₯subscriptπ‘‘π‘Œπ‘¦π‘“π‘”π‘¦2𝐢\displaystyle\rho_{X}(x,g\circ f(x))+d_{Y}(y,f\circ g(y))\ \leq\ 2C,italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x , italic_g ∘ italic_f ( italic_x ) ) + italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y , italic_f ∘ italic_g ( italic_y ) ) ≀ 2 italic_C ,

where x=g⁒(y)π‘₯𝑔𝑦x=g(y)italic_x = italic_g ( italic_y ).

Finally, we have to check that f𝑓fitalic_f and g𝑔gitalic_g are coarse with respect to the metrics ρXsubscriptπœŒπ‘‹\rho_{X}italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT and ρYsubscriptπœŒπ‘Œ\rho_{Y}italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT. For g𝑔gitalic_g, the estimate

ρX⁒(g⁒(y1),g⁒(y2))≀ρY⁒(y1,y2)subscriptπœŒπ‘‹π‘”subscript𝑦1𝑔subscript𝑦2subscriptπœŒπ‘Œsubscript𝑦1subscript𝑦2\rho_{X}(g(y_{1}),g(y_{2}))\leq\rho_{Y}(y_{1},y_{2})italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_g ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_g ( italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) ≀ italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )

for any y1,y2∈Ysubscript𝑦1subscript𝑦2π‘Œy_{1},y_{2}\in Yitalic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_Y follows directly from (2). For f𝑓fitalic_f we have

ρY⁒(f⁒(x1),f⁒(x2))subscriptπœŒπ‘Œπ‘“subscriptπ‘₯1𝑓subscriptπ‘₯2\displaystyle\rho_{Y}(f(x_{1}),f(x_{2}))italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_f ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) =\displaystyle== ρX⁒(g∘f⁒(x1),g∘f⁒(x2))+dY⁒(f⁒(x1),f⁒(x2))subscriptπœŒπ‘‹π‘”π‘“subscriptπ‘₯1𝑔𝑓subscriptπ‘₯2subscriptπ‘‘π‘Œπ‘“subscriptπ‘₯1𝑓subscriptπ‘₯2\displaystyle\rho_{X}(g\circ f(x_{1}),g\circ f(x_{2}))+d_{Y}(f(x_{1}),f(x_{2}))italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_g ∘ italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_g ∘ italic_f ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) + italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_f ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) )
≀\displaystyle\leq≀ ρX⁒(g∘f⁒(x1),x1)+ρX⁒(x1,x2)+ρX⁒(x2,g∘f⁒(x2))subscriptπœŒπ‘‹π‘”π‘“subscriptπ‘₯1subscriptπ‘₯1subscriptπœŒπ‘‹subscriptπ‘₯1subscriptπ‘₯2subscriptπœŒπ‘‹subscriptπ‘₯2𝑔𝑓subscriptπ‘₯2\displaystyle\rho_{X}(g\circ f(x_{1}),x_{1})+\rho_{X}(x_{1},x_{2})+\rho_{X}(x_% {2},g\circ f(x_{2}))italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_g ∘ italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) + italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_g ∘ italic_f ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) )
+dY(f(x1),f(x2)))\displaystyle+\ d_{Y}(f(x_{1}),f(x_{2})))+ italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_f ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) )
≀\displaystyle\leq≀ ρX⁒(x1,x2)+2⁒C+ϕ⁒(dX⁒(x1,x2))subscriptπœŒπ‘‹subscriptπ‘₯1subscriptπ‘₯22𝐢italic-Ο•subscript𝑑𝑋subscriptπ‘₯1subscriptπ‘₯2\displaystyle\rho_{X}(x_{1},x_{2})+2C+\phi(d_{X}(x_{1},x_{2}))italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + 2 italic_C + italic_Ο• ( italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) )
≀\displaystyle\leq≀ ρX⁒(x1,x2)+2⁒C+ϕ⁒(ρX⁒(x1,x2))subscriptπœŒπ‘‹subscriptπ‘₯1subscriptπ‘₯22𝐢italic-Ο•subscriptπœŒπ‘‹subscriptπ‘₯1subscriptπ‘₯2\displaystyle\rho_{X}(x_{1},x_{2})+2C+\phi(\rho_{X}(x_{1},x_{2}))italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + 2 italic_C + italic_Ο• ( italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) )
=\displaystyle== ψ⁒(ρX⁒(x1,x2)),πœ“subscriptπœŒπ‘‹subscriptπ‘₯1subscriptπ‘₯2\displaystyle\psi(\rho_{X}(x_{1},x_{2})),italic_ψ ( italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) ,

where C𝐢Citalic_C satisfies ρY⁒(y,f∘g⁒(y))≀CsubscriptπœŒπ‘Œπ‘¦π‘“π‘”π‘¦πΆ\rho_{Y}(y,f\circ g(y))\leq Citalic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y , italic_f ∘ italic_g ( italic_y ) ) ≀ italic_C and ρX⁒(x,g∘f⁒(x))≀CsubscriptπœŒπ‘‹π‘₯𝑔𝑓π‘₯𝐢\rho_{X}(x,g\circ f(x))\leq Citalic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x , italic_g ∘ italic_f ( italic_x ) ) ≀ italic_C for any x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X, y∈Yπ‘¦π‘Œy\in Yitalic_y ∈ italic_Y, and Ο•italic-Ο•\phiitalic_Ο• is a homeomorphism of (0,∞]0(0,\infty]( 0 , ∞ ] such that dY⁒(f⁒(x1),f⁒(x2))≀ϕ⁒(dX⁒(x1,x2))subscriptπ‘‘π‘Œπ‘“subscriptπ‘₯1𝑓subscriptπ‘₯2italic-Ο•subscript𝑑𝑋subscriptπ‘₯1subscriptπ‘₯2d_{Y}(f(x_{1}),f(x_{2}))\leq\phi(d_{X}(x_{1},x_{2}))italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_f ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) ≀ italic_Ο• ( italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) for any x1,x2∈Xsubscriptπ‘₯1subscriptπ‘₯2𝑋x_{1},x_{2}\in Xitalic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_X. ∎

Definition 7.2.

Let (X,dX)𝑋subscript𝑑𝑋(X,d_{X})( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,dY)π‘Œsubscriptπ‘‘π‘Œ(Y,d_{Y})( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) be uniformly discrete metric spaces. We say that they are ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-coarsely equivalent if there exist coarse maps f:Xβ†’Y:π‘“β†’π‘‹π‘Œf:X\to Yitalic_f : italic_X β†’ italic_Y and g:Yβ†’X:π‘”β†’π‘Œπ‘‹g:Y\to Xitalic_g : italic_Y β†’ italic_X such that they determine coarse equivalence between (X,dX)𝑋subscript𝑑𝑋(X,d_{X})( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,dY)π‘Œsubscriptπ‘‘π‘Œ(Y,d_{Y})( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) and either of the two equivalent conditions of Theorem 7.1 holds.

Clearly, the space Z𝑍Zitalic_Z from the example 2 and a single point space are not ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-coarsely equivalent.

Corollary 7.3.

If (X,dX)𝑋subscript𝑑𝑋(X,d_{X})( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,dY)π‘Œsubscriptπ‘‘π‘Œ(Y,d_{Y})( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) are of bounded geometry then coarse equivalence and ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-coarse equivalence coincide.

Recall that Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-algebras A𝐴Aitalic_A and B𝐡Bitalic_B are called stably βˆ—*βˆ—-isomorphic if AβŠ—π•‚tensor-product𝐴𝕂A\otimes\mathbb{K}italic_A βŠ— blackboard_K and BβŠ—π•‚tensor-product𝐡𝕂B\otimes\mathbb{K}italic_B βŠ— blackboard_K are βˆ—*βˆ—-isomorphic, where 𝕂𝕂\mathbb{K}blackboard_K denotes the algebra of compact operators on a separable Hilbert space.

Proposition 7.4.

Let (X,dX)𝑋subscript𝑑𝑋(X,d_{X})( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,dY)π‘Œsubscriptπ‘‘π‘Œ(Y,d_{Y})( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) be ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-coarsely equivalent spaces. Then Cβ„¬β’π’’βˆ—β’(X,dX)subscriptsuperscript𝐢ℬ𝒒𝑋subscript𝑑𝑋C^{*}_{\mathcal{B}\mathcal{G}}(X,d_{X})italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_B caligraphic_G end_POSTSUBSCRIPT ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and Cβ„¬β’π’’βˆ—β’(Y,dY)subscriptsuperscriptπΆβ„¬π’’π‘Œsubscriptπ‘‘π‘ŒC^{*}_{\mathcal{B}\mathcal{G}}(Y,d_{Y})italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_B caligraphic_G end_POSTSUBSCRIPT ( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) are stably βˆ—*βˆ—-isomorphic.

Proof.

A reduction to the case of surjective f𝑓fitalic_f implementing coarse equivalence and an explicit bijection between the underlying spaces X×ℕ𝑋ℕX\times\mathbb{N}italic_X Γ— blackboard_N and YΓ—β„•π‘Œβ„•Y\times\mathbb{N}italic_Y Γ— blackboard_N were constructed in [1, Theorem 4] for metrics of bounded geometry, and this bijection depends only on the cardinality of fβˆ’1⁒(y)superscript𝑓1𝑦f^{-1}(y)italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y ), y∈Yπ‘¦π‘Œy\in Yitalic_y ∈ italic_Y, which is uniformly bounded and does not depend on the metric, so passing to the direct limit agrees with the corresponding βˆ—*βˆ—-isomorphism between Cuβˆ—β’(X,ρX)βŠ—π•‚tensor-productsubscriptsuperscript𝐢𝑒𝑋subscriptπœŒπ‘‹π•‚C^{*}_{u}(X,\rho_{X})\otimes\mathbb{K}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) βŠ— blackboard_K and Cuβˆ—β’(Y,ρY)βŠ—π•‚tensor-productsubscriptsuperscriptπΆπ‘’π‘ŒsubscriptπœŒπ‘Œπ•‚C^{*}_{u}(Y,\rho_{Y})\otimes\mathbb{K}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_Y , italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) βŠ— blackboard_K. To finish the proof, note that dir⁒limρXβˆˆβ„¬β’π’’β’(X,dX)(Cuβˆ—β’(X,ρX)βŠ—π•‚)β‰…(dir⁒limρXβˆˆβ„¬β’π’’β’(X,dX)Cuβˆ—β’(X,ρX))βŠ—π•‚dirsubscriptsubscriptπœŒπ‘‹β„¬π’’π‘‹subscript𝑑𝑋tensor-productsubscriptsuperscript𝐢𝑒𝑋subscriptπœŒπ‘‹π•‚tensor-productdirsubscriptsubscriptπœŒπ‘‹β„¬π’’π‘‹subscript𝑑𝑋subscriptsuperscript𝐢𝑒𝑋subscriptπœŒπ‘‹π•‚\operatorname{dir}\lim_{\rho_{X}\in\mathcal{B}\mathcal{G}(X,d_{X})}(C^{*}_{u}(% X,\rho_{X})\otimes\mathbb{K})\cong(\operatorname{dir}\lim_{\rho_{X}\in\mathcal% {B}\mathcal{G}(X,d_{X})}C^{*}_{u}(X,\rho_{X}))\otimes\mathbb{K}roman_dir roman_lim start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ( italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) βŠ— blackboard_K ) β‰… ( roman_dir roman_lim start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_X , italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) ) βŠ— blackboard_K. ∎

Proposition 7.5.

Let (X,dX)𝑋subscript𝑑𝑋(X,d_{X})( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,dY)π‘Œsubscriptπ‘‘π‘Œ(Y,d_{Y})( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) be ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-coarsely equivalent discrete metric spaces, and let (X,dX)𝑋subscript𝑑𝑋(X,d_{X})( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) satisfy property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A. Then (Y,dY)π‘Œsubscriptπ‘‘π‘Œ(Y,d_{Y})( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) satifies property ℬ⁒𝒒ℬ𝒒\mathcal{B}\mathcal{G}caligraphic_B caligraphic_G-A too.

Proof.

Let f𝑓fitalic_f, g𝑔gitalic_g be the maps from Definition 7.2, and let ΟƒXβˆˆβ„¬β’π’’β’(X,dX)subscriptπœŽπ‘‹β„¬π’’π‘‹subscript𝑑𝑋\sigma_{X}\in\mathcal{B}\mathcal{G}(X,d_{X})italic_Οƒ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ). Then there exists a homeomorphism ψXsubscriptπœ“π‘‹\psi_{X}italic_ψ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT of (0,∞]0(0,\infty]( 0 , ∞ ] and ρXβˆˆβ„¬β’π’’β’(X,dX)subscriptπœŒπ‘‹β„¬π’’π‘‹subscript𝑑𝑋\rho_{X}\in\mathcal{B}\mathcal{G}(X,d_{X})italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_X , italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) such that ρX⁒(x1,x2)β‰€ΟˆX⁒(ΟƒX⁒(x1,x2))subscriptπœŒπ‘‹subscriptπ‘₯1subscriptπ‘₯2subscriptπœ“π‘‹subscriptπœŽπ‘‹subscriptπ‘₯1subscriptπ‘₯2\rho_{X}(x_{1},x_{2})\leq\psi_{X}(\sigma_{X}(x_{1},x_{2}))italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ≀ italic_ψ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_Οƒ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) for any x1,x2∈Xsubscriptπ‘₯1subscriptπ‘₯2𝑋x_{1},x_{2}\in Xitalic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_X and (X,ρX)𝑋subscriptπœŒπ‘‹(X,\rho_{X})( italic_X , italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) has property A. Let ΟƒYβˆˆβ„¬β’π’’β’(Y,dY)subscriptπœŽπ‘Œβ„¬π’’π‘Œsubscriptπ‘‘π‘Œ\sigma_{Y}\in\mathcal{B}\mathcal{G}(Y,d_{Y})italic_Οƒ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ). By definition, there exists ρYβˆˆβ„¬β’π’’β’(Y,dY)subscriptπœŒπ‘Œβ„¬π’’π‘Œsubscriptπ‘‘π‘Œ\rho_{Y}\in\mathcal{B}\mathcal{G}(Y,d_{Y})italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ∈ caligraphic_B caligraphic_G ( italic_Y , italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) such that (X,ρX)𝑋subscriptπœŒπ‘‹(X,\rho_{X})( italic_X , italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) and (Y,ρY)π‘ŒsubscriptπœŒπ‘Œ(Y,\rho_{Y})( italic_Y , italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) are coarsely equivalent, hence (Y,ρY)π‘ŒsubscriptπœŒπ‘Œ(Y,\rho_{Y})( italic_Y , italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) has property A. It remains to show that there exists a homeomorphism ψYsubscriptπœ“π‘Œ\psi_{Y}italic_ψ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT of (0,∞]0(0,\infty]( 0 , ∞ ] such that ρY⁒(y1,y2)β‰€ΟˆY⁒(ΟƒY⁒(y1,y2))subscriptπœŒπ‘Œsubscript𝑦1subscript𝑦2subscriptπœ“π‘ŒsubscriptπœŽπ‘Œsubscript𝑦1subscript𝑦2\rho_{Y}(y_{1},y_{2})\leq\psi_{Y}(\sigma_{Y}(y_{1},y_{2}))italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ≀ italic_ψ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_Οƒ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) for any y1,y2∈Ysubscript𝑦1subscript𝑦2π‘Œy_{1},y_{2}\in Yitalic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_Y.

As g:(Y,ΟƒY)β†’(X,ΟƒX):π‘”β†’π‘ŒsubscriptπœŽπ‘Œπ‘‹subscriptπœŽπ‘‹g:(Y,\sigma_{Y})\to(X,\sigma_{X})italic_g : ( italic_Y , italic_Οƒ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) β†’ ( italic_X , italic_Οƒ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) is a coarse map, there exists a homeomorphism α𝛼\alphaitalic_Ξ± of (0,∞]0(0,\infty]( 0 , ∞ ] such that

ΟƒY(y1,y2)β‰₯Ξ±(ΟƒX(g(y1),g(y2)).\sigma_{Y}(y_{1},y_{2})\geq\alpha(\sigma_{X}(g(y_{1}),g(y_{2})).italic_Οƒ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) β‰₯ italic_Ξ± ( italic_Οƒ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_g ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_g ( italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) .

Then, we have

ψX⁒(ΟƒX⁒(g⁒(y1),g⁒(y2)))β‰₯ρX⁒(g⁒(y1),g⁒(y2)).subscriptπœ“π‘‹subscriptπœŽπ‘‹π‘”subscript𝑦1𝑔subscript𝑦2subscriptπœŒπ‘‹π‘”subscript𝑦1𝑔subscript𝑦2\psi_{X}(\sigma_{X}(g(y_{1}),g(y_{2})))\geq\rho_{X}(g(y_{1}),g(y_{2})).italic_ψ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_Οƒ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_g ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_g ( italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) ) β‰₯ italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_g ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_g ( italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) .

As g:(Y,ρY)β†’(X,ρX):π‘”β†’π‘ŒsubscriptπœŒπ‘Œπ‘‹subscriptπœŒπ‘‹g:(Y,\rho_{Y})\to(X,\rho_{X})italic_g : ( italic_Y , italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) β†’ ( italic_X , italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) is also a coarse map, there exists a homeomorphism β𝛽\betaitalic_Ξ² of (0,∞]0(0,\infty]( 0 , ∞ ] such that

β⁒(ρX⁒(g⁒(y1),g⁒(y2)))β‰₯ρY⁒(y1,y2).𝛽subscriptπœŒπ‘‹π‘”subscript𝑦1𝑔subscript𝑦2subscriptπœŒπ‘Œsubscript𝑦1subscript𝑦2\beta(\rho_{X}(g(y_{1}),g(y_{2})))\geq\rho_{Y}(y_{1},y_{2}).italic_Ξ² ( italic_ρ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_g ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_g ( italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) ) β‰₯ italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) .

Combining these three inequalitites, we get ψY⁒(ΟƒY⁒(y1,y2))β‰₯ρY⁒(y1,y2)subscriptπœ“π‘ŒsubscriptπœŽπ‘Œsubscript𝑦1subscript𝑦2subscriptπœŒπ‘Œsubscript𝑦1subscript𝑦2\psi_{Y}(\sigma_{Y}(y_{1},y_{2}))\geq\rho_{Y}(y_{1},y_{2})italic_ψ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_Οƒ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) β‰₯ italic_ρ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) for any y1,y2∈Ysubscript𝑦1subscript𝑦2π‘Œy_{1},y_{2}\in Yitalic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_Y, where ψY=β∘ψX∘αsubscriptπœ“π‘Œπ›½subscriptπœ“π‘‹π›Ό\psi_{Y}=\beta\circ\psi_{X}\circ\alphaitalic_ψ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT = italic_Ξ² ∘ italic_ψ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ∘ italic_Ξ±. ∎

References

  • [1] J. Brodzki, G.A. Niblo, N.J. Wright. Property A, partial translation structures, and uniform embeddings in groups. J. London Math. Soc. 76 (2007), 479–497.
  • [2] V. Manuilov. On the Cβˆ—superscript𝐢C^{*}italic_C start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT-algebra of matrix-finite bounded operators. J. Math. Anal. Appl. 478 (2019), 294–303.
  • [3] V. Manuilov, J. Zhu. Two versions of the uniform Roe algebras for spaces without bounded geometry. Math. Nachr. 294 (2021), 1140–1147.
  • [4] P. W. Nowak. Coarsely embeddable metric spaces without Property A. J. Funct. Anal. 252, 126–136.
  • [5] H. Sako. A generalization of expander graphs and local reflexivity of uniform Roe algebras. J. Funct. Anal. 265 (2013), 1367–1391.
  • [6] H. Sako. Finite-dimensional approximation properties for uniform Roe algebras. J. Lond. Math. Soc.102 (2020), 623–644.
  • [7] G. Skandalis, J. L. Tu, G. Yu. The coarse Baum–Connes conjecture and groupoids. Topology 41 (2002), 807–834.
  • [8] R. Willett. Some notes on property A. Limits of graphs in group theory and computer science, 191–281. EPFL Press, Lausanne; 2009.
  • [9] Jiawen Zhang, Jingming Zhu. A weight-free characterisation of Yu’s property A. arXiv.org: 2412.16549.